Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090303    DOI: 10.1088/1674-1056/26/9/090303
GENERAL Prev   Next  

A high-fidelity memory scheme for quantum data buses

Bo-Yang Liu(刘博阳)1, Wei Cui(崔巍)2, Hong-Yi Dai(戴宏毅)3, Xi Chen(陈希)1, Ming Zhang(张明)1
1 College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China;
2 School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China;
3 College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  

A novel quantum memory scheme is proposed for quantum data buses in scalable quantum computers by using adjustable interaction. Our investigation focuses on a hybrid quantum system including coupled flux qubits and a nitrogen-vacancy center ensemble. In our scheme, the transmission and storage (retrieval) of quantum state are performed in two separated steps, which can be controlled by adjusting the coupling strength between the computing unit and the quantum memory. The scheme can be used not only to reduce the time of quantum state transmission, but also to increase the robustness of the system with respect to detuning caused by magnetic noises. In comparison with the previous memory scheme, about 80% of the transmission time is saved. Moreover, it is exemplified that in our scheme the fidelity could achieve 0.99 even when there exists detuning, while the one in the previous scheme is 0.75.

Keywords:  quantum memory      hybrid quantum system      quantum data bus  
Received:  07 March 2017      Revised:  16 May 2017      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, 61134008, and 11404113).

Corresponding Authors:  Ming Zhang     E-mail:  zhangming@nudt.edu.cn

Cite this article: 

Bo-Yang Liu(刘博阳), Wei Cui(崔巍), Hong-Yi Dai(戴宏毅), Xi Chen(陈希), Ming Zhang(张明) A high-fidelity memory scheme for quantum data buses 2017 Chin. Phys. B 26 090303

[1] Shi Z G, Chen X W, Zhu X X and Song K H 2009 Chin. Phys. B 18 910
[2] Wang D M, Qian Y, Xu J B and Yu Y H 2015 Chin. Phys. B 24 110304
[3] Wu C, Fang M F, Xiao X, Li Y L and Cao S 2011 Chin. Phys. B 20 020305
[4] Hua M, Tao M J and Deng F G 2016 Sci. Rep. 6 22037
[5] Shahriar M S, Kumar P and Hemmer P R 2012 J. Phys. B-At. Mol. Opt. Phys. 45 124018
[6] Garcia-Escartin J C and Chamorro-Posada P 2006 Phys. Rev. Lett. 97 110502
[7] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[8] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[9] Li T, Yang G J and Deng F G 2014 Opt. Express 22 23987
[10] Yu L B, Feng J S, Dong P, Li D C and Cao Z L 2015 Quantum Inf. Process. 14 3303
[11] Mariantoni M, Wang H, Yamamoto T, Neeley M, Bialczak R C, Chen Y, Lenander M, Lucero E, O'Connell A D, Sank D, Weides M, Wenner J, Yin Y, Zhao J, Korotkov A N, Cleland A N and Martinis J M 2011 Science 334 61
[12] Yang C P, Su Q P, Zheng S B and Han S 2015 Phys. Rev. B 92 054509
[13] Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P and Schmiedmayer J 2015 P. Natl. Acad. Sci. USA 112 3866
[14] Matsuzaki Y, Zhu X, Kakuyanagi K, Toida H, Shimooka T, Mizuochi N, Nemoto K, Semba K, Munro W J, Yamaguchi H and Saito S 2015 Phys. Rev. A 91 042329
[15] Averin D V, Xu K, Zhong Y P, Song C, Wang H and Han S 2016 Phys. Rev. Lett. 116 010501
[16] Douce T, Stern M, Zagury N, Bertet P and Milman P 2015 Phys. Rev. A 92 052335
[17] Ginossar E and Grosfeld E 2014 Nat. Commun. 5 4772
[18] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914
[19] Wolfowicz G, Maier-Flaig H, Marino R, Ferrier A, Vezin H, Morton J J L and Goldner P 2015 Phys. Rev. Lett. 114 170503
[20] Bensky G, Amsuss R, Majer J, Petrosyan D, Schmiedmayer J and Kurizki G 2011 Quantum Inf. Process. 10 1037
[21] Wu Q Q, Xu L, Tan Q S and Yan L L 2012 Int. J. Theor. Phys 51 1482
[22] Cohen G Z and Ventra M 2013 Phys. Rev. B 87 014513
[23] Liu T, Cao X Z, Su Q P, Xiong S J and Yang C P 2016 Sci. Rep. 6 21562
[24] Li P B, Gao S Y and Li F L 2011 Phys. Rev. A 83 054306
[25] Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[26] Wallquist M, Hammerer K, Rabl P, Lukin M and Zoller P 2009 Phys. Scripta T137 014001
[27] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[28] Sillanpaeae M A, Park J I and Simmonds R W 2007 Nature 449 438
[29] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D and Sorensen A S 2010 Phys. Rev. Lett. 105 210501
[30] Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, MunroWJ, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N and Semba K 2011 Nature 478 221
[31] Zhao Y J, Fang X M, Zhou F and Song K H 2012 Phys. Rev. A 86 052325
[32] Wang Z L, Zhong Y P, He L J, Wang H, Martinis J M, Cleland A N and Xie Q W 2013 Appl. Phys. Lett. 102 163503
[33] Kyaw T H, Felicetti S, Romero G, Solano E and Kwek L C 2015 Sci. Rep. 5 8621
[34] Qian Y, Zhang Y Q and Xu J B 2012 Chin. Sci. Bull. 57 1637
[35] Zhang F Y, Chen X Y, Li C and Song H S 2015 Sci. Rep. 5 17025
[36] McKay D C, Naik R, Reinhold P, Bishop L S and Schuster D I 2015 Phys. Rev. Lett. 114 080501
[37] Feng Z B, Wang H L and Yan R Y 2016 Quantum Inf. Process. 15 3151
[38] Lu X Y, Xiang Z L, Cui W, You J Q and Nori F 2013 Phys. Rev. A 88 012329
[39] Blum S, O'Brien C, Lauk N, Bushev P, Fleischhauer M, and Morigi G 2015 Phys. Rev. A 91 033834
[40] Xiang Z L, Lu X Y, Li T F, You J Q and Nori F 2013 Phys. Rev. B 87 144516
[41] Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
[42] Shi F, Rong X, Xu N, Wang Y, Wu J, Chong B, Peng X, Kniepert J, Schoenfeld R S, Harneit W, Feng M and Du J 2010 Phys. Rev. Lett. 105 040504
[43] Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nat. Phys. 6 249
[44] Zhao N, Hu J L, Ho S W, Wan J T K and Liu R B 2011 Nat. Nanotech. 6 242
[45] Liu G Q, Jiang Q Q, Chang Y C, Liu D Q, Li W X, Gu C Z, Po H C, Zhang W X, Zhao N and Pan X Y 2014 Nanoscale 6 10134
[46] Li P B, Liu Y C, Gao S Y, Xiang Z L, Rabl P, Xiao Y F and Li F L 2015 Phys. Rev. Applied 4 044003
[47] Grezes C, Julsgaard B, Kubo Y, MaWL, Stern M, Bienfait A, Nakamura K, Isoya J, Onoda S, Ohshima T, Jacques V, Vion D, Esteve D, Liu R B, Molmer K and Bertet P 2015 Phys. Rev. A 92 020301
[48] Twamley J and Barrett S D 2010 Phys. Rev. B 81 241202
[49] Huemmer T, Reuther G M, Haenggi P and Zueco D 2012 Phys. Rev. A 85 052320
[50] van der Ploeg S H W, Izmalkov A, van den Brink A M, Huebner U, Grajcar M, Il'ichev E, Meyer H G and Zagoskin A M 2007 Phys. Rev. Lett. 98 057004
[51] Liu Y X, Wei L F, Tsai J S and Nori F 2006 Phys. Rev. Lett. 96 067003
[52] Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S and Tsai J S 2007 Science 316 723
[53] Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys. 11 013017
[54] Forrester D M and Kusmartsev F V 2016 Sci. Rep. 6 25084
[55] Qiu Y, Xiong W, He X L, Li T F and You J Q 2016 Sci. Rep. 6 28622
[56] Ashhab S, Niskanen A O, Harrabi K, Nakamura Y, Picot T, de Groot P C, Harmans C J P M, Mooij J E and Nori F 2008 Phys. Rev. B 77 014510
[57] Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. B 73 094506
[58] Bertet P, Chiorescu I, Burkard G, Semba K, Harmans C, DiVincenzo D P and Mooij J E 2005 Phys. Rev. Lett. 95 257002
[59] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[60] Casanova J, Romero G, Lizuain I, Garcia-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[61] Fedorov A, Feofanov A K, Macha P, Forn-Diaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
[62] Song W L, Yin Z Q, Yang W L, Zhu X B, Zhou F and Feng M 2015 Sci. Rep. 5 7755
[63] Jin L, Pfender M, Aslam N, Neumann P, Yang S, Wrachtrup J and Liu R B 2015 Nat. Commun. 6 8251
[64] Kubo Y, Grezes C, Dewes A, Umeda T, Isoya J, Sumiya H, Morishita N, Abe H, Onoda S, Ohshima T, Jacques V, Dreau A, Roch J F, Diniz I, Auffeves A, Vion D, Esteve D and Bertet P 2011 Phys. Rev. Lett. 107 220501
[65] Liu Y, You J and Hou Q 2016 Sci. Rep. 6 21775
[66] van der Wal C H, ter Haar A C, Wilhelm F K, Schouten R N, Harmans C J, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity
Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2018, 27(5): 054206.
[3] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[4] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[5] High-fidelity quantum memory realized via Wigner crystals of polar molecules
Xue Peng(薛鹏) and Wu Jian-Zhi(午剑智) . Chin. Phys. B, 2012, 21(1): 010308.
No Suggested Reading articles found!