INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A theoretical and experimental evaluation of III-nitride solar-blind UV photocathode |
Bin Ren(任彬)1,2,3, Hui Guo(郭晖)1,3, Feng Shi(石峰)1,3, Hong-Chang Cheng(程宏昌)1,3, Hui Liu(刘晖)1,3, Jian Liu(刘健)4, Zhi-Hui Shen(申志辉)5, Yan-Li Shi(史衍丽)3, Pei Liu(刘培)6 |
1 Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710065, China;
2 Department of Physics, Beijing Institute of Technology, Beijing 100081, China;
3 Kunming Institute of Physics, Kunming 650223, China;
4 Institute of Electron Engineering and Photoelectric Technology, Nanjing University of Science and Technology, Nanjing 210094, China;
5 Chongqing Optoelectronics Research Institute, Chongqing 400060, China;
6 Newcastle University Business School, Newcastle, The UK |
|
|
Abstract We have developed a superior solar-blind ultraviolet (UV) photocathode with an AlxGa1-xN photocathode (x ~ 0.45) in semi-transparent mode, and assessed spectra radiant sensitivity related to practical use. Before being grown over a basal plane sapphire substrate by low-pressure metal organic chemical vapor deposition (MOCVD), a reasonable design was made to the photocathode epitaxy structure, focusing on the AlxGa1-xN: Mg active layer, then followed by a comprehensive analysis of the structural and optical characterization. The spectra radiant sensitivity is peaked of 41.395 mA/W at wavelength 257 nm and then decreases by about 3 to 4 decades at 400 nm demonstrating the ability of this photocathode for solar-blind application prospects.
|
Received: 10 February 2017
Revised: 14 April 2017
Accepted manuscript online:
|
PACS:
|
85.60.Ha
|
(Photomultipliers; phototubes and photocathodes)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974015) and the National Defense Pre-Research Foundation of China (Grant No. 9140C380502150C38002). |
Corresponding Authors:
Bin Ren
E-mail: robinson_cv@163.com
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Bin Ren(任彬), Hui Guo(郭晖), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Hui Liu(刘晖), Jian Liu(刘健), Zhi-Hui Shen(申志辉), Yan-Li Shi(史衍丽), Pei Liu(刘培) A theoretical and experimental evaluation of III-nitride solar-blind UV photocathode 2017 Chin. Phys. B 26 088504
|
[1] |
Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M and Zhang B S 2012 Appl. Phys. Lett. 100 173513
|
[2] |
Wang H, Jin X L, Chen C P, Tian M F and Zhu K H 2015 Chin. Phys. B 24 038501
|
[3] |
Hu Z F, Wu H H, Lv Y W and Zhang X Q 2015 Chin. Phys. B 24 107302
|
[4] |
Ulmer M P, Wessels B W and Siegmund O H W 2003 Proc. SPIE 4854 225
|
[5] |
Jiao G C, Liu Z T, Guo H and Zhang Y J 2016 Chin. Phys. B 25 048505
|
[6] |
Lee C J, Kwon Y J, Won C H, Lee J H and Hahm S H 2013 Appl. Phys. Lett. 103 111110
|
[7] |
Malinowski P E, Duboz J Y, Moor P D, Minoglou K, John J, Horcajo S M, Semond F, Frayssinet E, Verhoeve P, Esposito M, Giodanengo B, BenMoussa A, Mertens R and Hoof C V 2014 Appl. Phys. Lett. 98 141104
|
[8] |
Liu Z, Machuca F, Pianetta P, Spicer W E. and Pease R F 2004 Appl. Phys. Lett. 85 1541
|
[9] |
Yang Y F, Fu R G, Zhang Y J, Wang X H and Zou J J 2012 Acta Phys. Sin. 61 068501 (in Chinese)
|
[10] |
Fu X Q, Chang B K, Qian Y S and Zhang J J 2012 Chin. Phys. B 21 030601
|
[11] |
Wang X H, Chang B K, Ren L and Gao P 2011 Appl. Phys. Lett. 98 082109
|
[12] |
Fu X Q, Chang B K, Wang X H, Li B, Du Y J and Zhang J J 2011 Chin. Phys. B 20 037902
|
[13] |
Zhang Y J, Zou J J, Wang X H, Chang B K, Qian Y S, Zhang J J and Gao P 2011 Chin. Phys. B 20 048501
|
[14] |
Fu X Q, Chang B K, Qian Y S and Zhang J J 2012 Chin. Phys. B 21 030601
|
[15] |
Jia X Z 2013 Negative Electron Affinity Photocathodes and Applications (Beijing: National Defense Industry Press) p. 122
|
[16] |
Wang X H, Shi F, G H, Hu C L, Cheng H C, Chang B K, Ren L, Du Y J and Zhang J J 2012 Chin. Phys. B 21 087901
|
[17] |
Siegmund O, Vallerga J, Mcphate J, Malloy J, Tremsin A, Martin A, Ulmer M and Wessels B 2006 Nucl. Instrum. Methods Phys. Res. A 567 89
|
[18] |
Ambacher O 1998 J. Phys, D: Appl. Phys. 31 2653
|
[19] |
Grabowski S P, Schneider M, Nienhaus H, Monch W, Dimitrov R, Ambacher O and Stutzmann M 2001 Appl. Phys. Lett. 78 2503
|
[20] |
Leopold D J, Buckley J H and Rebillot P 2005 J. Appl. Phys. 98 043525
|
[21] |
Cicek E, Vashaei Z, Clintock R M and Razeghi M 2011 Proc. SPIE 8155 8155O
|
[22] |
He Y, Sun Y T, Zhao Y M, Yu S Z and Dong J T 2017 Chin. Phys. B 26 038102
|
[23] |
Asif F, Lachab M, Coleman A, Ahmad I, Zhang B, Adivarahan V and Khan A 2014 JVSTB 32 061204
|
[24] |
Sanjay Kr, Jana, Saptarsi Ghosh, Syed Mukulika Dinara, Mihir Mahata, Soumen Das and Dhrubes Biswas 2015 JVSTB 33 041206
|
[25] |
Yang Y F, Fu R G, Ma L, Wang X H and Zhang Y J 2012 Acta Phys. Sin. 61 128504 (in Chinese)
|
[26] |
Duboz J Y, Grandjean N, Omnes F, Mosca M and Reverchon J L 2005 Appl. Phys. Lett. 86 063511
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|