Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084701    DOI: 10.1088/1674-1056/27/8/084701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel

Jian Li(李健)1, Gang Dong(董刚)2, Hui Zhang(张辉)2, Zhengshou Chen(陈正寿)1,3, Zhaode Zhang(张兆德)1,3
1 School of Naval Architecture and Mechanical-electrical Engineering, Zhejiang Ocean University, Zhoushan 316022, China;
2 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
3 Key Laboratory of Offshore Engineering Technology of Zhejiang Province, Zhoushan 316022, China
Abstract  This work is motivated by previous experimental and numerical studies which reveal that the hairpin vortex could be formed by the interaction between spanwise adjacent low-speed streaks. To prove that such an interaction mechanism is still applicable in the normal direction, two sinuous low-speed streaks with the same streamwise phase are set to be in the upper half and bottom half of a small size channel, respectively, and their evolution and interaction are investigated by direct numerical simulation. A new kind of hairpin-like vortical structure, distributed in the normal direction and straddled across both halves of the channel, is found during the cross-interaction process of the low-speed streaks. The influence of such a normal-distributed hairpin-like vortex (NHV) on the turbulent statistical regularity is also revealed. It is observed that the NHV can lead to a sudden surge of wall skin friction, but the value of the normal velocity as well as the streamwise and spanwise vorticity sharply decrease to zero in the center of the channel.
Keywords:  low-speed streaks      hairpin vortex      channel flow      direct numerical simulation  
Received:  30 January 2018      Revised:  26 March 2018      Accepted manuscript online: 
PACS:  47.27.De (Coherent structures)  
  47.27.nd (Channel flow)  
  47.32.cb (Vortex interactions)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ18A020002), the National Natural Science Foundation of China (Grant No. 41776105), and the Foundation of the Educational Committee of Zhejiang Province, China (Grant No. Y201737053).
Corresponding Authors:  Gang Dong     E-mail:  dgvehicle@yahoo.com

Cite this article: 

Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德) A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel 2018 Chin. Phys. B 27 084701

[1] Theodorsen T Mechanism of turbulence 1952 Proceedings of the Second Mid-western Conference on Fluid Mechanics, Columbus, USA, p. 1
[2] Wu X and Moin P 2009 J. Fluid Mech. 630 1
[3] Hu H B, Du J, Huang S H and Wang Y 2013 Chin. Phys. B 22 074703
[4] Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
[5] Tang Z Q and Jiang N 2012 Exp. Fluids 53 2
[6] Zhang N, Lu L P, Duan Z Z and Yuan X J 2008 Appl. Math. Mech. Engl. 29 1
[7] Klebanoff P S, Tidstrom K D and Sargent L M 1962 J. Fluid Mech. 2 1
[8] Herbert T1984 AIAA Paper 84 9
[9] Wang W Z and Tang D B 2003 Acta Mech. Sin. 19 6
[10] Smith C R, Walker J D A, Haidari A H and Sobrun U 1991 Philos. T. R. Soc. B. 336 1641
[11] Smith C R and Walker J D A 1995 Turbulent wall-layer vortices (Netherlands: Springer) p. 235
[12] Zhou J, Adrian R J, Balachandar S and Kendall T M 1999 J. Fluid Mech. 387 353
[13] Liu C Q and Chen L 2011 Comput. Fluids 45 1
[14] Asai M, Minagawa M and Nishioka M 2002 J. Fluid Mech. 455 1
[15] Brandt L 2007 Eur. J. Mech. B 26 1
[16] Adrian R J, Balachandar S and Lin Z C 2001 Ksme Int. J. 15 12
[17] Brandt L and De Lange H C 2008 Phys. Fluids 20 024107
[18] Konishi Y and Asai M 2010 Fluid Dyn. Res. 42 035504
[19] Li J, Dong G and Lu Z H 2014 Fluid Dyn. Res. 46 5
[20] Sandham N D and Kleiser L 1992 Fluid Dyn. Res. 245 1
[21] Jim'enez J and Moin P 1991 J. Fluid Mech. 225 1
[22] Adrian R J and Liu Z C 2002 J. Vision 5 1
[23] Zhao Y M, Yang Y and Chen S Y 2016 J. Fluid Mech. 793 1
[24] Canuto C 1988 Spectral methods in fluid dynamics (New York: Springer) p. 1.
[25] Li J, Dong G and Zhang J L 2016 Appl. Math. Mech. Engl. 7 3
[26] Huang L, Fan B and Dong G 2010 Phys. Fluids 22 015103
[27] Han Y, Zhang H, Fan B C, Li J, Jiang D W and Zhao Z J 2017 Chin. Phys. B 26 084704
[28] Schoppa W and Hussain F 2002 J. Fluid Mech. 453 1
[29] Dean R B1978 J. Fluids Eng. 100 2
[30] Kline S J, Reynolds W C and Schraub F A 1967 J. Fluid Mech. 30 1
[31] Robinson S K 1991 Ann. Rev. Fluid Mech. 23 1
[32] Li J, Dong G, Huang L P and Fan B C 2012 J. Nanjing U. Sci. Tech. No: Nat. Sci. Ed. 36 2 (in Chinese)
[33] Jeong J, Hussain F, Schoppa W and Kim J 1997 J. Fluid Mech. 332 1
[34] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 77 1
[35] Iwamoto K, Suzuki Y and Kasagi N 2002 Int. J. Heat Fluid Flow 23 5
[36] Liu C Q, Wang Y Q, Yang Y and Duan Z W 2016 Sci. China-Phys. Mech. Astron. 59 8
[1] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[2] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[3] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[4] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[5] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[6] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[7] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[8] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[9] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
[10] Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
Cai Wei-Hua(蔡伟华),Li Feng-Chen(李凤臣), and Zhang Hong-Na(张红娜) . Chin. Phys. B, 2011, 20(12): 124702.
[11] Vertical rotation effect on turbulence characteristics in an open channel flow
Zou Li-Yong(邹立勇), Bai Jing-Song(柏劲松), Li Bu-Yang(李步阳), Tan Duo-Wang(谭多望), Li Ping(李平), and Liu Cang-Li(刘仓理) . Chin. Phys. B, 2008, 17(3): 1034-1040.
[12] Orientation distribution of fibres in a channel flow of fibre suspension
Lin Jian-Zhong (林建忠), Li Jun (李俊), Zhang Wei-Feng (张卫峰). Chin. Phys. B, 2005, 14(12): 2529-2538.
No Suggested Reading articles found!