Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080504    DOI: 10.1088/1674-1056/26/8/080504
GENERAL Prev   Next  

Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy

Li Feng(冯力)1,2, Beibei Jia(贾北北)1, Changsheng Zhu(朱昶胜)2, Guosheng An(安国升)1,2, Rongzhen Xiao(肖荣振)1,2, Xiaojing Feng(冯小静)1
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China
Abstract  

This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid-solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries.

Keywords:  multi-phase transformation      microstructure      multi-phase-field method      grain orientation  
Received:  05 March 2017      Revised:  27 April 2017      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.70.Fh (Phase transitions: general studies)  
  61.66.Dk (Alloys )  
  64.75.Gh (Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51661020, 11504149, and 11364024).

Corresponding Authors:  Li Feng     E-mail:  fenglils@lut.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静) Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy 2017 Chin. Phys. B 26 080504

[1] Luo Z R 2013 "Phase Field Modeling of Microstructure Evolution in Metallic Materials," Ph. D. Thesis (Nanning: Guangxi University) (in Chinese)
[2] Boussinot G, Finel A and Le B Y 2009 Acta Mater. 57 921
[3] Wang J, Li X K, Liu C and Shi Y N 2016 Acta Mechanica Solida Sinica 37 1 (in Chinese)
[4] Raabe D 2002 Computational Materials Science (Beijing: Beijing Chemical Industry Press) p. 223
[5] Sun R X 2010 "Simulation for the austenite to ferrite transformation", MS Thesis (Kaifeng: Henan University of Technology) (in Chinese)
[6] Bottger B, Schmitz G J and Santillana B 2012 Trans. Indian Inst. Met. 65 613
[7] Zhao D P, Jing T and Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese)
[8] Feng L, Wang Z P, Lu Y and Zhu C S 2008 Acta Phys. Sin. 57 1084 (in Chinese)
[9] Feng L, Wang Z P, Zhu C S and Lu Y 2009 Chin. Phys. B 18 1985
[10] Niu Y E 2008 "Phase-Field Simulation of Fe-C Alloy in the Isothermal Solidification," MS Thesis (Xi'an: Xi'an Technological University) (in Chinese)
[11] Heo T W and Chen L Q 2014 The Minerals, Metals & Materials Society 66 1520
[12] Bradley J R, Rigsbee J M and Aaronson H I 1977 Metall. Trans. A 8A 323
[13] Mecozzi M G, Militzer M, Sietsma J and van der Zwaag S 2008 Metallurgical and Materials Transactions A 39 1237
[14] Huang C J, Browne J D and McFadden S 2006 Acta Mater. 54 11
[15] Loginova I, Odqvist J, Amberg G and Agren J 2003 Acta Mater. 51 1327
[16] Mecozzi M G, Militzer M, Sietsma J and van der Zwaag S 2006 Acta Mater. 54 3691
[17] Mecozzi M G, Sietsma J and van der Zwaag 2006 Acta Mater. 54 1431
[18] Pariser G, Schaffnit P, Steinbach I and Bleck W 2001 Stell. Res. 72 354
[19] Bhattacharya A, Upadhyay C S and Sangal S 2015 Metallurgical and Materials Transactions A 64 926
[20] Mecozzi M G, Sietsma J and van der Zwaag 2005 Comput. Mater. Sci. 34 290
[21] Huang C J and Browne J D 2006 Metallurgical and Materials Transactions A 37 589
[22] Song S T 2008 "A Phase-field Simulation of Austenite to Ferrite Transformation in Low Carbon Steels," MS Thesis (Jinan: Shandong University) (in Chinese)
[23] Yeddu H K, Borgenstam A and Ågren J 2013 J. Alloys Compd. 577 141
[24] Chang K and Moelans N 2014 Acta Mater. 64 443
[25] Kim S G, Kim W T and Suzuki T 2004 J. Crystal Growth 261 135
[26] Feng L, Jia B B, Zhu C S, Lu Y, Xiao R Z and Feng X J 2016 4th International Conference on Sensors, December 27-28, 2016, Shenzhen, China, p. 855
[27] Cheng X N, Dai Q X and Shao H H 2006 Solid phase transformation and diffusion of materials (Beijing: Chemical Industry Press) pp. 57-70
[28] Steinbach I and Apel M 2006 Physica D 217 153
[29] Xiao R Z, An G S, Zhu C S, Wang Z P and Yang S Y 2014 Transactions of Nonferrous Metals Society of China 24 3639
[30] Cahn J W 1956 Acta Metal 4 458
[31] Cai D 2012 "Simulation of the influence of interfacial snisotropic on the microstructure evolution by phase-field approach", MS Thesis (Changsha: Central South University) (in Chinese)
[32] Jiang Y H 2014 "Application of analytical model for the study of interface-controlled solid-state phase transformation kinetics", Ph. D. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)
[33] Zhang L F and Liu Y C 2012 Heat Treatment of Metals 37 29
[34] Wu H D, Zhang C, Liu W B and Yang Z G 2015 Acta Metal. Sin. 51 1136
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[8] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[9] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[10] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[11] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[12] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[13] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[14] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[15] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
No Suggested Reading articles found!