Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080503    DOI: 10.1088/1674-1056/26/8/080503
GENERAL Prev   Next  

Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system

Ningning Yang(杨宁宁)1,2, Yuchao Han(韩宇超)2, Chaojun Wu(吴朝俊)3, Rong Jia(贾嵘)1,2, Chongxin Liu(刘崇新)4
1 State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China;
2 Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China;
3 College of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China;
4 School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are enhanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.

Keywords:  fractional-order ferroresonance system      fractional-order sliding mode control      adaptive control      nonlinear circuit emulator  
Received:  15 February 2017      Revised:  19 April 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51507134) and the Science Fund from the Education Department of Shaanxi Province, China (Grant No. 15JK1537).

Corresponding Authors:  Chaojun Wu     E-mail:  chaojun.wu@stu.xjtu.edu.cn

Cite this article: 

Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新) Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system 2017 Chin. Phys. B 26 080503

[1] Dancaa M F, Tang W K S and Chen G R 2016 Chaos, Solitons and Fractals 84 31
[2] Podlubny I 1999 Fractional Differential Equations p. 261.
[3] Radwan A G and Fouda M E 2013 Circ. Syst. Signal Process. 5 32
[4] Podlubny I 1998 System Structure and Control 1-2 215
[5] Jonscher A K 1999 J. Phys. D: Appl. Phys. 14 32:R57
[6] Westerlund S and Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insul. 1 826
[7] Jesus I S and Machado J A T 2009 Nonlinear Dyn. 56 45
[8] Haba T C, Ablart G, Camps T and Olivie F 2005 Chaos, Solitons and Fractals 24 479
[9] Petras I 2008 Chaos, Solitons and Fractals 38 140
[10] Adolfsson K, Enelund M and Olsson P 2005 Mech. Time-Depend. Mat. 9 15
[11] Ahmed E and Elgazzar A S 2007 Physica A 379 607
[12] Pahnehkolaei S M A, Alfi A and Machado J A T 2017 Commun. Nonlinear Sci. Numer. Simul. 47 328
[13] Yang N N, Liu C X and Wu C J 2012 Chin. Phys. B 21 080503
[14] Yang N N, Wu C J, Jia R, et al. 2016 Math. Problems in Engineering 1 1
[15] Moreles M A and Lainez R 2016 Commun. Nonlinear Sci. Numer. Simul. 46 81
[16] Dzielinski A and Sierociuk D 2008 Acta Montan Slovaca 13 136
[17] Hong Z, Qian J, Chen Di-Yi and Herbert H C Iu 2015 Chin. Phys. B 24 080204
[18] Abu Bakar A, Khan, S A, Kwang T C and Abd Rahim N 2015 IEEE J. T. Electr. Electr. 10 28
[19] Ribas J C L, Lourenco E M, Leite J V and Batistela N J 2013 IEEE T. Magn. 49 1797
[20] Liu C X, Zhai D Q, Dong Z H and Liu Y 2010 Acta Phys. Sin. 59 3733 (in Chinese)
[21] Simha V and Lee W J 2008 IEEE Ind. Appl. Mag. 14 53
[22] Radmanesh H and Gharehpetian G B 2013 Int. J. Elec. Power 45 1
[23] Oustaloup, A, Mreau X and Nouillant M 1996 Control Eng. Pract. 4 1101
[24] Podlubny I 2003 Fractional-Order Systems and Fractional-Order Controllers pp. 43-54
[25] Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 040507
[26] Khanzadeh A and Pourgholi M 2016 Nonlinear Dyn. 86 543
[27] Pooseh S, Almeida R and Torres D F M 2014 J. Ind. Manag. Optim. 10 363
[28] Lin D and Wang X Y 2011 Nonlinear Dyn. 66 89
[29] Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
[30] Chen Y Q, Wei Y H, Zhong H and Wang Y 2016 Nonlinear Dyn. 85 633
[31] Yin C, Chen Y Q and Zhong S M 2014 IFAC Proceedings Volumes 47 5369
[32] Chen D Y, Zhang R F, Ma X Y and Wang J 2012 Chin. Phys. B 21 120507
[33] Jesus I S and Machado J A T 2009 Nonlinear Dyn. 56 45
[34] Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. B 20 060505
[35] Diethelm K 2011 Fract. Calc. Appl. Anal. 14 475
[36] He S B, Sun K H and Wang H H 2014 Acta Phys. Sin. 63 030502 (in Chinese)
[37] He S B, Sun K H and Wang H H 2016 The European Physical Journal Special Topics 225 97
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[3] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[4] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲). Chin. Phys. B, 2015, 24(6): 060508.
[5] Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach
Wei Wei (魏伟). Chin. Phys. B, 2015, 24(10): 100503.
[6] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Sun Xu-Bin (孙绪彬), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(1): 010501.
[7] Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities
Muhammad Riaz, Muhammad Rehan, Keum-Shik Hong, Muhammad Ashraf, Haroon Ur Rasheed. Chin. Phys. B, 2014, 23(11): 110502.
[8] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo (王树国), Zheng Song (郑松). Chin. Phys. B, 2013, 22(7): 070503.
[9] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
[10] Adaptive synchronization control of coupled chaotic neurons in the external electrical stimulation
Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Chen Ying-Yuan (陈颖源). Chin. Phys. B, 2013, 22(5): 058701.
[11] Adaptive control of bifurcation and chaos in a time-delayed system
Li Ning (李宁), Yuan Hui-Qun (袁惠群), Sun Hai-Yi (孙海义), Zhang Qing-Ling (张庆灵). Chin. Phys. B, 2013, 22(3): 030508.
[12] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平). Chin. Phys. B, 2012, 21(8): 080505.
[13] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2012, 21(3): 030505.
[14] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
[15] Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions
Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌). Chin. Phys. B, 2012, 21(12): 120508.
No Suggested Reading articles found!