Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080302    DOI: 10.1088/1674-1056/26/8/080302
GENERAL Prev   Next  

Conditions on converting coherence into entanglement

Lian-Wu Yang(杨连武)1,2, Yun-Jie Xia(夏云杰)1
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
2 Department of Physics and Information Engineering, Jining University, Qufu 273155, China
Abstract  

The present studies show that any nonzero amount of coherence of a system can be converted into entanglement between the system and an incoherent ancillary system via incoherent operations. According to this conclusion, we study the process of converting coherence into entanglement via a unitary operation where the initial ancillary system is of different quantum state. We find that some other conditions should be satisfied in converting coherence into entanglement. We also study the conditions of coherence consumption of converting coherence into entanglement.

Keywords:  coherence      entanglement      conditions  
Received:  04 November 2016      Revised:  25 April 2017      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204156, 11304179, and 11647172), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20133705110001), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AP09).

Corresponding Authors:  Yun-Jie Xia     E-mail:  yjxia@mail.qfnu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰) Conditions on converting coherence into entanglement 2017 Chin. Phys. B 26 080302

[1] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[2] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Åberg J 2014 Phys. Rev. Lett. 113 150402
[4] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[5] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Phys. Rev. X 5 021001
[6] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[7] Rebentrost P, Mohseni M and Aspuru G A 2009 J. Phys. Chem. B 113 9942
[8] Lloyd S 2011 J. Phys. Conf. Ser. 302 012037
[9] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[10] Huelga S and Plenio M 2013 Contemp. Phys. 54 181
[11] Levi F and Mintert F 2014 New J. Phys. 16 033007
[12] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M 2012 Nat. Nanotechnol. 7 663
[13] Karlström O, Linke H, Karlström G and Wacker A 2011 Phys. Rev. B 84 113415
[14] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[15] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[16] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[17] Girolami D 2014 Phys. Rev. Lett. 113 170401
[18] Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
[19] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[20] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[21] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[22] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[23] Yang G, Lian B, Nie M and Jin J 2017 Chin. Phys. B 26 040304
[24] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[25] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[26] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[27] Sanpera A, Tarrach R and Vidal G 1998 Phys. Rev. A 58 826
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] Vedral V 2002 Rev. Mod. Phys. 74 197
[30] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[31] Mani A and Karimipour V 2015 Phys. Rev. A 92 032331
[32] Tan K C, Kwon H, Park C and Jeong H 2016 Phys. Rev. A 94 022329
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[6] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[11] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[12] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[13] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[14] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[15] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
No Suggested Reading articles found!