Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 073201    DOI: 10.1088/1674-1056/ab90e9

Accurate electron affinity of atomic cerium and excited states of its anion

Xiao-Xi Fu(付筱茜)1, Ru-Lin Tang(唐如麟)1, Yu-Zhu Lu(陆禹竹)1, Chuan-Gang Ning(宁传刚)1,2
1 Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  Electron affinities (EA) of most lanthanide elements still remain unknown owing to their relatively lower EA values and the fairly complicated electronic structures. In the present work, we report the high-resolution photoelectron spectra of atomic cerium anion Ce- using the slow electron velocity-map imaging method in combination with a cold ion trap. The electron affinity of Ce is determined to be 4840.62(21) cm-1 or 0.600160(26) eV. Moreover, several excited states of Ce- (4H9/2, 4I9/2, 2H9/2, 2G9/2, 2G7/2, 4H13/2, 2F5/2, and 4I13/2) are observed.
Keywords:  electron affinity      cerium anion      slow electron velocity-map imaging      cold ion trap  
Received:  07 April 2020      Revised:  29 April 2020      Accepted manuscript online: 
PACS:  32.10.Hq (Ionization potentials, electron affinities)  
  32.80.Gc (Photodetachment of atomic negative ions)  
  37.10.Rs (Ion cooling)  
  37.10.Ty (Ion trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91736102 and 11974199) and the National Key R&D Program of China (Grant No. 2018YFA0306504).
Corresponding Authors:  Chuan-Gang Ning     E-mail:

Cite this article: 

Xiao-Xi Fu(付筱茜), Ru-Lin Tang(唐如麟), Yu-Zhu Lu(陆禹竹), Chuan-Gang Ning(宁传刚) Accurate electron affinity of atomic cerium and excited states of its anion 2020 Chin. Phys. B 29 073201

[1] O'Malley S M and Beck D R 2009 Phys. Rev. A 79 012511
[2] Pan L and Beck D R 2016 Phys. Rev. A 93 062501
[3] Pan L and Beck D R 2010 Phys. Rev. A 82 014501
[4] Walter C W, Gibson N D, Matyas D J, Crocker C, Dungan K A, Matola B R and Rohlen J 2014 Phys. Rev. Lett. 113 063001
[5] Walter C W, Gibson N D, Janczak C M, Starr K A, Snedden A P, Field R L and Andersson P 2007 Phys. Rev. A 76 052702
[6] Walter C W, Gibson N D, Li Y G, Matyas D J, Alton R M, Lou S E, Field R L, Hanstorp D, Pan L and Beck D R 2011 Phys. Rev. A 84 032514
[7] Bilodeau R C and Haugen H K 2000 Phys. Rev. Lett. 85 534
[8] Fischer A, Canali C, Warring U, Kellerbauer A and Fritzsche S 2010 Phys. Rev. Lett. 104 073004
[9] Tang R L, Si R, Fei Z J, Fu X X, Lu Y Z, Brage T, Liu H T, Chen C Y and Ning C G 2019 Phys. Rev. Lett. 123 203002
[10] O'Malley S M and Beck D R 2009 Phys. Rev. A 80 032514
[11] Kellerbauer A and Walz J 2006 New J. Phys. 8 45
[12] Yzombard P, Hamamda M, Gerber S, Doser M and Comparat D 2015 Phys. Rev. Lett. 114 213001
[13] Cerchiari G, Kellerbauer A, Safronova M S, Safronova U I and Yzombard P 2018 Phys. Rev. Lett. 120 133205
[14] Jordan E, Cerchiari G, Fritzsche S and Kellerbauer A 2015 Phys. Rev. Lett. 115 113001
[15] Sidorov V A, Nicklas M, Pagliuso P G, Sarrao J L, Bang Y, Balatsky A V and Thompson J D 2002 Phys. Rev. Lett. 89 157004
[16] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[17] Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Phys. Rev. Lett. 84 4986
[18] Harrison N, Alver U, Goodrich R G, Vekhter I, Sarrao J L, Pagliuso P G, Moreno N O, Balicas L, Fisk Z, Hall D, Macaluso R T and Chan J Y 2004 Phys. Rev. Lett. 93 186405
[19] Gu C, Jin R, Zeng D L, Yue X F, Gao X and Li J M 2016 Chin. Phys. Lett. 33 043201
[20] Han H L, Zhang X Z and Shi T Y 2007 Chin. Phys. Lett. 24 3392
[21] Yang X Y, Xu H F and Yan B 2019 Chin. Phys. B 28 013203
[22] Peterson K A and Dyall K G 2015 Computational Methods in Lanthanide and Actinide Chemistry, edited by Dolg M (Chichester: John Wiley and Sons)
[23] Dinov K, Beck D R and Datta D 1994 Phys. Rev. A 50 1144
[24] O'Malley S M and Beck D R 2000 Phys. Rev. A 61 034501
[25] Berkovits D, Ghelberg S, Heber O and Paul M 1997 Nucl. Instrum. Methods Phys. Res. B 123 515
[26] Davis V T and Thompson J S 2002 Phys. Rev. Lett. 88 073003
[27] Cao X Y and Dolg M 2004 Phys. Rev. A 69 042508
[28] O'Malley S M and Beck D R 2006 Phys. Rev. A 74 042509
[29] Felfli Z, Msezane A Z and Sokolovski D 2009 Phys. Rev. A 79 012714
[30] Felton J, Ray M and Jarrold C C 2014 Phys. Rev. A 89 033407
[31] Tang R L, Fu X X, Lu Y Z and Ning C G 2020 J. Chem. Phys. 152 114303
[32] Pelaez R J, Blondel C Delsart C and Drag C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125001
[33] Carette T, Drag C, Scharf O, Blondel C, Delsart C Froese Fischer C and Godefroid M 2010 Phys. Rev. A 81 042522
[34] Tang R L, Chen X L, Fu X X, Wang H and Ning C G 2018 Phys. Rev. A 98 020501(R)
[35] Chen X L and Ning C G 2017 J. Phys. Chem. Lett. 8 2735
[36] Luo Z H, Chen X L, Li J M and Ning C G 2016 Phys. Rev. A 93 020501(R)
[37] Fu X X, Luo Z H, Chen X L, Li J M and Ning C G 2016 J. Chem. Phys. 145 164307
[38] Fu X X, Tang R L, Lu Y Z and Ning C G 2019 Chin. J. Chem. Phys. 32 187
[39] Fu X X, Lu Y Z, Tang R L and Ning C G 2020 Phys. Rev. A 101 022502
[40] Tang R L, Fu X X and Ning C G 2018 J. Chem. Phys. 149 134304
[41] Wiley W C and McLaren I H 1955 Rev. Sci. Instrum. 26 1150
[42] Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[43] León I, Yang Z, Liu H T and Wang L S 2014 Rev. Sci. Instrum. 85 083106
[44] Dick B 2014 Phys. Chem. Chem. Phys. 16 570
[45] Tang R L, Fu X X, Lu Y Z and Ning C G 2019 J. Phys. Chem. Lett. 10 702
[46] Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559
[47] Kramida A 2011 Comput. Phys. Commun. 182 419
[48] Peláez R J, Blondel C, Vandevraye M, Drag C and Delsart C 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195009
[49] Radziemski L J, Fisher K J, Steinhaus D W and Goldman A S 1972 Comput. Phys. Commun. 3 9
[50] Tiesinga E, Mohr P J, Newell D B and Taylor B N 2019 The 2018CODATA Recommended Values Fundamental Phys. Constants (Web Version 8.0). Database developed by Baker J, Douma M and Kotochigova S. Available at, National Institute of Standards and Technology Gaithersburg MD 20899
[1] Accurate calculation of electron affinity for S3
Xue Yang(杨雪), Haifeng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(1): 013203.
[2] Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC
Feng Liang(梁锋), Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Zhi-Juan Zhao(赵志娟), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Jing Yang(杨静), Wei Liu(刘炜), Xiao-Guang He(何晓光), Xiao-Jing Li(李晓静), Xiang Li(李翔), Shuang-Tao Liu(刘双韬), Hui Yang(杨辉), Li-Qun Zhang(张立群), Jian-Ping Liu(刘建平), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同). Chin. Phys. B, 2016, 25(5): 057703.
[3] Thin film micro-scaled cold cathode structures of undoped and Si-doped AlN grown on SiC substrate with low turn-on voltage
Shi Ming (侍铭), Chen Ping (陈平), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Zheng Jun (郑军), Cheng Bu-Wen (成步文), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Liu Wei (刘炜), Li Xiang (李翔), Zhao Dan-Mei (赵丹梅), Wang Qi-Ming (王启明), Liu Jian-Ping (刘建平), Zhang Shu-Ming (张书明), Yang Hui (杨辉). Chin. Phys. B, 2015, 24(5): 057901.
[4] Formula for average energy required to produce a secondary electron in an insulator
Xie Ai-Gen (谢爱根), Zhan Yu (詹煜), Gao Zhi-Yong (高志勇), Wu Hong-Yan (吴红艳). Chin. Phys. B, 2013, 22(5): 057901.
[5] Influence of cesium on the stability of a GaAs photocathode
Zhang Jun-Ju (张俊举), Chang Ben-Kang (常本康), Fu Xiao-Qian (付小倩), Du Yu-Jie (杜玉杰), Li Biao (李飙), Zou Ji-Jun (邹继军). Chin. Phys. B, 2011, 20(8): 087902.
[6] Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes
Zhang Yi-Jun(张益军), Zou Ji-Jun(邹继军), Wang Xiao-Hui(王晓晖), Chang Ben-Kang(常本康), Qian Yun-Sheng(钱芸生), Zhang Jun-Ju(张俊举), and Gao Pin(高频) . Chin. Phys. B, 2011, 20(4): 048501.
[7] Air-stable ambipolar organic field effect transistors with heterojunction of pentacene and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide
Li Jian-Feng(李建丰), Chang Wen-Li(常文利), Ou Gu-Ping(欧谷平), and Zhang Fu-Jia(张福甲). Chin. Phys. B, 2009, 18(7): 3002-3007.
[8] Geometry and electronic properties of Cun(n≤9)
Wang Hong-Yan (王红艳), Zhu Zheng-He (李朝阳), Li Chao-Yang (唐永建), Tang Yong-Jian (朱正和). Chin. Phys. B, 2004, 13(5): 677-681.
[9] Experimental study on the activation process of GaAs spin-polarized electron source
Ruan Cun-Jun (阮存军). Chin. Phys. B, 2003, 12(5): 483-487.
No Suggested Reading articles found!