INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide |
Li-li Tian(田莉莉)1, Jian-long Liu(刘建龙)1, Ke-ya Zhou(周可雅)1, Yang Gao(高扬)2, Shu-tian Liu(刘树田)1 |
1 Department of Physics, Harbin Institute of Technology, Harbin 150001, China; 2 College of Electronic Engineering, Heilongjiang University, Harbin 150080, China |
|
|
Abstract It has been recently demonstrated that negative-index dispersion and mode degeneracy can be achieved by manipulating a spoof–insulator–spoof (SIS) waveguide. In this paper, we propose a new SIS waveguide, which is composed of two spoof surface plasmon polaritons (SSPPs) waveguides drilled with periodic rhomboidal grooves. Both the symmetric and asymmetric cases are investigated. Our simulation results show that the asymmetric SIS waveguides are more significant. By tailoring the tilt of the rhomboidal grooves, the negative-index dispersion can be achieved and the microwave band gap (MBG) can be effectively modulated. At a critical tilt, there appears an accidental mode degeneracy at the edge of the first Brillouin zone. The excitation and propagation of the two coupled modes sustained by the asymmetric SIS waveguides are also demonstrated.
|
Received: 16 January 2017
Revised: 04 April 2017
Accepted manuscript online:
|
PACS:
|
84.40.Az
|
(Waveguides, transmission lines, striplines)
|
|
84.40.Dc
|
(Microwave circuits)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No.2013CBA01702) and the National Natural Science Foundation of China (Grant Nos.61377016,61575055,10974039,61307072,61308017,and 61405056). |
Corresponding Authors:
Shu-tian Liu
E-mail: stliu@hit.edu.cn
|
Cite this article:
Li-li Tian(田莉莉), Jian-long Liu(刘建龙), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田) Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide 2017 Chin. Phys. B 26 078401
|
[1] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[2] |
Maier S A 2007 Plasmonics:Fundatmentals and Applications (1st Edn.) (New York:Springer) pp. 5–34
|
[3] |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
|
[4] |
Hu H F, Ji D X, Zeng X, Liu K and Gan Q Q 2013 Sci. Rep. 3 1249
|
[5] |
Baffou G and Quidant R 2013 Laser Photon. Rev. 7 171
|
[6] |
Hohenau A, Krenn J R, Drezet A, Mollet O, Huant S, Genet C, Stein B and Ebbesen T W 2011 Opt. Express 19 25749
|
[7] |
Homola J 2008 Chem. Rev. 108 462
|
[8] |
Pendry J B, Martin-Moreno L and Garcia-Vidal F J 2004 Science 305 847
|
[9] |
Garcia-Vidal F J, Martin-Moreno L and Pendry J B 2005 J. Opt. A:Pure Appl. Opt. 7 S97
|
[10] |
Shen L F, Chen X D and Yang T J 2008 Opt. Express 16 3326
|
[11] |
Liu X Y, Feng Y J, Zhu B, Zhao J M and Jiang T 2013 Opt. Express 21 31155
|
[12] |
Shi H Y, Zhang A X, Chen J Z, Wang J F, Song X and Xu Zhuo 2016 Chin. Phys. B 25 78105
|
[13] |
Tian L L, Liu J L, Zhou K Y, Gao Y and Liu S T 2016 Sci. Rep. 6 32008
|
[14] |
Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 34101
|
[15] |
Kats M A, Woolf D, Blanchard R, Yu N F and Capasso F 2011 Opt. Express 19 14860
|
[16] |
Woolf D, Kats M A and Capasso F 2014 Opt. Lett. 39 517
|
[17] |
Tian L L, Chen Y, Liu J L, Guo K, Gao Y and Liu S T 2016 Chin. Phys. B 25 078401
|
[18] |
Xu B Z, Li Z, Liu L L, Xu J, Chen C and Gu C Q 2016 J. Opt. Soc. Am. B 33 1388
|
[19] |
Liu X Y, Feng Y J, Zhu B, Zhao J M and Jiang T 2016 Sci. Rep. 6 20448
|
[20] |
Pang Y Q, Wang J F, Ma Hua, Feng M D, Xia S, X Zhuo and Qu S B 2016 Appl. Phys. Lett. 108 194101
|
[21] |
Zhang Q, Xiao J J, Han D Z, Qin F F, Zhang X M and Yao Y 2015 J. Phys. D:Appl. Phys. 48 205103
|
[22] |
Meng Y, Xiang H, Zhang R Y, Wu X X, Han D Z, Chan C T and Wen W J 2016 Opt. Lett. 41 3698
|
[23] |
Xiao M, Zhang Z Q and Chan C T 2014 Phys. Rev. X 4 021017
|
[24] |
Blanco-Redondo A, Andonegui I, Collins M J, Harari G, Lumer Y, Rechtsman M C, Eggleton B J and Segev M 2016 Phys. Rev. Lett. 116 163901
|
[25] |
Soukoulis C M and Wegener M 2011 Nat. Photon. 5 523
|
[26] |
Quesada R, Martin-Cano D, Garcia-Vidal F J and Bravo-Abad J 2014 Opt. Lett. 39 2990
|
[27] |
Shen X P, Cui T J, Martin-Cane D and Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. USA 110 40
|
[28] |
Shen X P and Cui T J 2013 Appl. Phys. Lett. 102 211909
|
[29] |
Wang H X, Chen Y G, Hang Z H, Chen H Y, Kee H Y and Jiang J H 2016 arXiv:1608.02437v2.
|
[30] |
Huang X Q, Lai Y, Hang Z H, Zheng H H and Chan C T 2011 Nat. Mater. 24 18059
|
[31] |
Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H and Chen Y F 2014 Sci. Rep. 4 4613
|
[32] |
Xu L, Wang H X, Xu Y D, Chen H Y and Jiang J H 2016 Opt. Express 24 18059
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|