Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078201    DOI: 10.1088/1674-1056/26/7/078201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Conductivity and applications of Li-biphenyl-1, 2-dimethoxyethane solution for lithium ion batteries

Geng Chu(褚赓)1, Bo-Nan Liu(刘柏男)1, Fei Luo(罗飞)2, Wen-Jun Li(李文俊)1, Hao Lu(陆浩)1, Li-Quan Chen(陈立泉)1, Hong Li(李泓)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Department of Chemistry, Tsinghua University, Beijing 100084, China
Abstract  

The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution (LixBp(DME)9.65, Bp=biphenyl, DME=1,2-dimethoxyethane, x=0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li1.50Bp(DME)9.65 has the highest total conductivity 10.7 mS/cm. The conductivity obeys Arrhenius law with the activation energy (Ea(x=0.50)=0.014 eV, Ea(x=1.00)=0.046 eV). The ionic conductivity and electronic conductivity of LixBp(DME)9.65 solutions are investigated at 20℃ using the isothermal transient ionic current (ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li1.00Bp(DME)9.65 are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li1.00Bp(DME)9.65 solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate (LFP) and Li1.5Al0.5Ti1.5(PO4)3 (LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V–3.75 V at a current density of 50 mA/g. The potential of Li1.00Bp(DME)9.65 solution is about 0.3 V vs. Li+/Li, which indicates the solution has a strong reducibility. The Li1.00Bp(DME)9.65 solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.

Keywords:  lithium solution      ionic and electronic conductivity      flow lithium ion battery      prelithiation  
Received:  03 February 2017      Revised:  21 March 2017      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  72.60.+g (Mixed conductivity and conductivity transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.52315206),the Ministry of Science and Technology of China (Grant No.2016YFB0100100),and the Beijing Municipal Science and Technology Commission,China (Grant No.D151100003115003).

Corresponding Authors:  Hong Li     E-mail:  hli@iphy.ac.cn

Cite this article: 

Geng Chu(褚赓), Bo-Nan Liu(刘柏男), Fei Luo(罗飞), Wen-Jun Li(李文俊), Hao Lu(陆浩), Li-Quan Chen(陈立泉), Hong Li(李泓) Conductivity and applications of Li-biphenyl-1, 2-dimethoxyethane solution for lithium ion batteries 2017 Chin. Phys. B 26 078201

[1] Scott N D, Walker J F and Hansley V L 1936 J. Am. Chem. Soc. 58 2442
[2] Walker J F and Scott N D 1938 J. Am. Chem. Soc. 60 951
[3] Bergmann E and Bergmann F 1937 J. Am. Chem. Soc. 59 1443
[4] Jeanes A and Adams R 1937 J. Am. Chem. Soc. 59 2608
[5] Chu T L and Yu S C 1954 J. Am. Chem. Soc. 76 3367
[6] Holmeswalker W A and Ubbelohde A R 1954 J. Chem. Soc. 720
[7] Liu N, Li H, Jiang J, Huang X J and Chen L Q 2006 J. Phys. Chem. B 110 10341
[8] Tan K S, Grimsdale A C and Yazami R 2012 J. Phys. Chem. B 116 9056
[9] Tan K S and Yazami R 2015 Electrochim. Acta 180 629
[10] Huang Q, Li H, Gratzel M and Wang Q 2013 Phys. Chem. Chem. Phys. 15 1793
[11] Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B and Yu G 2015 Chem. Soc. Rev. 44 7968
[12] Duduta M, Ho B, Wood V C, Limthongkul P, Brunini V E, Carter W C and Chiang Y M 2011 Adv. Energy Mater. 1 511
[13] Huang Q Z and Wang Q 2016 Chin. Phys. B 25 7
[14] Chen Y C, Wu M X, Ren Y K, Kang L B, Li Y J, Han L, Lin D Y and Wang Q P 2012 Adv. Technol. Electral. Eng. Energ. 31 3
[15] Feng C M, Chen Y C, Han L, Gong Y, Cserhati C and Csik A 2015 Energ. Stor. Sci. Technol. 4 3
[16] Verma P, Maire P and Novák P 2010 Electrochim. Acta 55 6332
[17] Wang Q, Li H, Chen L Q and Huang X J 2001 Carbon 39 2211
[18] Bonino F, Brutti S, Piana M, Natale S, Scrosati B, Gherghel L and Mullen K 2006 Electrochim. Acta 51 3407
[19] Li H, Huang X J, Chen L Q, Wu Z G and Liang Y 1999 Electrochem. Solid State Lett. 2 547
[20] Liu X, Xie K, Zheng C M and Wang J 2011 Acta Phys. Sin. 60 6 (in Chinese)
[21] Shi S L, Liu Y G, Zhang J Y and Wang T H 2009 Chin. Phys. B 18 4564
[22] Li J, Ru Q, Hu S J and Guo L Y 2014 Acta Phys. Sin. 63 9 (in Chinese)
[23] Li J, Ru Q, Sun D W, Zhang B B, Hu S J and Hou X H 2013 Acta Phys. Sin. 62 8 (in Chinese)
[24] Zhang J, Shi Z and Wang C 2014 Electrochim. Acta 125 22
[25] Zhang J, Wu H, Wang J, Shi J and Shi Z 2015 Electrochim. Acta 182 156
[26] Park H, Yoon T, Kim Y U, Ryu J H and Oh S M 2013 Electrochim. Acta 108 591
[27] Forney M W, Ganter M J, Staub J W, Ridgley R D and Landi B J 2013 Nano Lett. 13 4158
[28] Zhou W, Wang S, Li Y, Xin S, Manthiram A and Goodenough J B 2016 J. Am. Chem. Soc. 138 9385
[29] Watanabe M, Rikukawa M, Sanui K and Ogata N 1985 J. Appl. Phys. 58 736
[30] Zhang S S and Wan G X 1993 J. Appl. Polym. Sci. 48 405
[31] Xu K 2004 Chem. Rev. 104 4303
[32] Nishida T, Nishikawa K and Fukunaka Y 2008 ECS Trans. 6 1
[33] Yamada A, Chung S C and Hinokuma K 2001 J. Electrochem. Soc. 148 A224
[34] Dahn J R 1991 Phys. Rev. B 44 9170
[1] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[2] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[3] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[4] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[5] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[6] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[9] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[10] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[11] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[12] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[13] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[14] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[15] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
No Suggested Reading articles found!