Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097503    DOI: 10.1088/1674-1056/27/9/097503

Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy

S Rizwan Ali1, Farah Naz1, Humaira Akber1, M Naeem1, S Imran Ali2, S Abdul Basit3, M Sarim3, Sadaf Qaseem1
1 Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan;
2 Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi, Pakistan;
3 Department of Computer Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan

The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity (HC), remanence (MR), and blocking temperature (TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T<TB and the metropolis Monte-Carlo method for T>TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MR to significantly increase. Our results show that the parameters associated with the particle size distribution (Dd,δ) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system.

Keywords:  magnetic nanoparticles      Monte Carlo simulations      size distribution      interparticle interaction      hysteresis  
Received:  10 April 2018      Revised:  29 June 2018      Accepted manuscript online: 
PACS:  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.40.Mg (Numerical simulation studies)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Corresponding Authors:  S Rizwan Ali     E-mail:

Cite this article: 

S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy 2018 Chin. Phys. B 27 097503

[1] Bedoya-Hincapie C M, Ortiz-Alvarez H H, Restrepo-Parraa E, Olaya-Florez J J and Alfonso J E 2015 Chin. Phys. B 24 117701
[2] Sheng-Nan S, Chao W, Zan-Zan Z, Yang-Long H, Venkatraman S S and Zhi-Chuan X 2014 Chin. Phys. B 23 037503
[3] Masrour R, Bahmad R, Benyoussef A 2013 Chin. Phys. B 22 057504
[4] Wu X W, Guslienko K Y, Chantrell R W and Weller D 2003 Appl. Phys. Lett. 82 3475
[5] Guimarâe Alberto P 2009 Principles of Nanomagnetism (Berlin:Springer Science & Business Media) p. 38[ISBN 978-3642014819]
[6] Munoz-Sandoval E, Torres-Heredia J J and López-Urías F 2005 J. Appl. Phys. 97 10
[7] Weller D and Moser A 1999 IEEE Trans. Magn. 35 6
[8] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D and Nogués J 2003 Nature 423 850
[9] Lv D L and Xu C 2010 Chin. Phys. Lett. 27 097503
[10] Sánchez R D, Rivas J, Vaqueiro P, López-Quintela M A and Caeiro D 2002 J. Magn. Magn. Mater. 247 92
[11] Hansen M F and Morup S 1999 J. Magn. Magn. Mater. 203 214
[12] Xu C, Li Z Y and Hui P M 2001 J. Appl. Phys. 89 3403
[13] Stoner E C and Wohlfarth E P 1948 Phil. Tran. Roy. Soc. Lond. A 240 599
[14] Wernsdorfer W, Orozco E B, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A, Pascard H and Mailly D 1997 Phys. Rev. Lett. 78 1791
[15] Bodker F, Morup S and Linderoth S 1994 Phys. Rev. Lett. 72 282
[16] Respaud M 1999 J. Appl. Phys. 86 556
[17] Cullity B D and Graham C D 2011 Introduction Magn. Mater. (Massachusetts:John Wiley & Sons) p. 425[ISBN 978-1118211496]
[18] Kechrakos D and Trohidou K N 2003 J. Mag. Mag. Mat. 262 107
[19] Aharoni A 2000 Introduction Theory Ferromagnetism (New York:Clarendon Press) p. 92[ISBN 978-0198508090]
[20] Chuev M A and Hesse J 2007 J. Phys.:Condens. Matter 19 506201
[21] Tannous C and Gieraltowski J 2008 Eur. J. Phys. 29 475
[22] Serantes D and Baldomir D 2012 Open Surf. Sci. J. 4 71
[23] Sattler K D 2011 Handbook Nanophyscis:Nanoparticles Quantum Dots (Boca Raton:CRC Press) p. 228[ISBN 978-1420075441]
[24] Pfeiffer H 1990 Phys. Status Solidi A 122 377
[25] Du H F and Du A 2006 J. Appl. Phys. 99 104306
[26] Jaffari G H, Ali S R, Hasanain S K, Güntherodt G and Shah S I J. Appl. Phys. 108 063921
[27] Chesnel K, Trevino M, Cai Y, Hancock J M, Smith S J and Harrison R G 2014 J. Phys.:Conf. Ser. 521 012004
[28] Verdes C, Diaz B R, Thompson S M, R Chantrell W and Stancu A 2002 Phys. Rev. B 65 174417
[1] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[2] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[3] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[4] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[5] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[6] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[7] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[10] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[11] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[12] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[13] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
No Suggested Reading articles found!