CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions |
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Chen Fu(付晨), Xue Li(李雪) |
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract A fluorescent probe for the sensitive and selective determination of copper ion (Cu2+) is presented. It is based on the use of tungsten disulfide quantum dots (WS2 QDs) which is independent of the pH of solution and emits strong blue fluorescence. Copper ions could cause aggregation of the WS2 QDs and lead to fluorescence quenching of WS2 QDs. The change of fluorescence intensity is proportional to the concentration of Cu2+, and the limit of detection is 0.4 μM. The fluorescent probe is highly selective for Cu2+ over some potentially interfering ions. These results indicate that WS2 QDs, as a fluorescent sensing platform, can meet the selective requirements for biomedical and environmental application.
|
Received: 12 January 2017
Revised: 23 February 2017
Accepted manuscript online:
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
87.85.fk
|
(Biosensors)
|
|
Fund: Project supported by the National Basic Research Program, China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61335006, and 61378073), and the Beijing Municipal Science and Technology Committee, China (Grant No. Z151100003315006). |
Corresponding Authors:
Da-Wei He, Yong-Sheng Wang
E-mail: dwhe@bjtu.edu.cn;yshwang@bjtu.edu.cn
|
Cite this article:
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Chen Fu(付晨), Xue Li(李雪) Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions 2017 Chin. Phys. B 26 066102
|
[1] |
Guo D, Dong Z, Luo C, Zan W, Yan S and Yao X 2014 RSC Advances 4 5718
|
[2] |
Su Y, Shi B, Liao S, Qin Y, Zhang L, Huang M and Zhao S 2016 Sensors and Actuators B: Chemical 225 334
|
[3] |
Guo Y, Wang Z, Qu W, Shao H and Jiang X 2011 Biosens Bioelectron 26 4064
|
[4] |
Sun X, Liu P, Wu L and Liu B 2015 Analyst 140 6742
|
[5] |
Liu Y, Zhao Y and Zhang Y 2014 Sensors and Actuators B: Chemical 196 647
|
[6] |
Zong L, Song Y, Li Q and Li Z 2016 Sensors and Actuators B: Chemical 226 239
|
[7] |
Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensors and Actuators B: Chemical 190 516
|
[8] |
Zhao J, Deng J, Yi Y, Li H, Zhang Y and Yao S 2014 Talanta 125 372
|
[9] |
Li J J, Ji C H, Hou C J, Huo D Q, Zhang S Y, Luo X G, Yang M, Fa H B and Deng B 2016 Sensors and Actuators B: Chemical 223 853
|
[10] |
Hu X X, Zheng X L, Fan X X, Su Y T, Zhan X Q and Zheng H 2016 Sensors and Actuators B: Chemical 227 191
|
[11] |
Zhang C, Wan LY, Wu S, Wu D, Qin X and Ko F 2015 Dyes and Pigments 123 380
|
[12] |
Bennur T, Khan Z, Kshirsagar R, Javdekar V and Zinjarde S 2016 Sensors and Actuators B: Chemical 233 684
|
[13] |
Dong M, Liu C, Li S, Li R, Qiao Y, Zhang L, Wei W, Qi W and Wang H 2016 Sensors and Actuators B: Chemical 232 234
|
[14] |
Liu Y, Deng M, Tang X, Zhu T, Zang Z, Zeng X and Han S 2016 Sensors and Actuators B: Chemical 233 25
|
[15] |
Zhang X, Lei W, Ye X, Wang C, Lin B, Tang H and Li C 2015 Mater. Lett. 159 399
|
[16] |
Xu S, Li D and Wu P 2015 Adv. Funct. Mater. 25 1127
|
[17] |
Varoon K, Zhang X, Elyassi B, Brewer DD, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A and Tsapatsis M 2011 Science 334 72
|
[18] |
Schornbaum J, Winter B, Schießl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E and Zaumseil J 2014 Adv. Funct. Mater. 24 5798
|
[19] |
Pei L, Tao S, Haibo S and Song X 2015 Solid State Commun. 218 25
|
[20] |
Lin H, Wang C, Wu J, Xu Z, Huang Y and Zhang C 2015 New J. Chem. 39 8492
|
[21] |
Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z 2015 Adv. Mater. 27 5235
|
[22] |
Li B L, Chen L X, Zou H L, Lei J L, Luo H Q and Li N B 2014 Nanoscale 6 9831
|
[23] |
Ke R, Zhang X, Wang L, Zhang C, Zhang S, Niu H, Mao C, Song J, Jin B and Tian Y 2015 J. Solid State Electrochem. 19 1633
|
[24] |
Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V K, Ajayan P M and Shaijumon M M 2015 Chem. Commun. 51 6293
|
[25] |
Gan Z X, Liu L Z, Wu H Y, Hao Y L, Shan Y, Wu X L and Chu P K 2015 Appl. Phys. Lett. 106 233113
|
[26] |
Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X and Zhang G 2015 J. Am. Chem. Soc. 137 15632
|
[27] |
Chen C, Qiao H, Lin S, Man Luk C, Liu Y, Xu Z, Song J, Xue Y, Li D, Yuan J, Yu W, Pan C, Ping Lau S and Bao Q 2015 Sci. Rep. 5 11830
|
[28] |
Ali J, Siddiqui G U, Choi K H, Jang Y and Lee K 2016 J. Lumin. 169 342
|
[29] |
Zhou H L, Yang W H, Wu Y P, Lin W, Kang J Y and Zhou C J 2015 Chin. Phys. B 24 077301
|
[30] |
Dong Y F, He D W, Wang Y S, Xu H T and Gong Z 2016 Acta Phys. Sin. 65 128101 (in Chinese)
|
[31] |
Zhao X, Ma X, Sun J, Li D and Yang X 2016 ACS Nano 10 2159
|
[32] |
Dai Y, Yan X H, Wu X, Sha D W, Chen M, Zou H, Ren J and Cheng X N 2016 Mater. Lett. 173 203
|
[33] |
Li Z, Jiang S, Xu S, Zhang C, Qiu H, Chen P, Gao S, Man B, Yang C and Liu M 2016 J. Alloys Compd. 666 412
|
[34] |
Zhao X, Xia C, Wang T, Peng Y and Dai X 2015 J. Alloys Compd. 649 357
|
[35] |
Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang DS, Liu K, Ji J, Li J, Sinclair R and Wu J 2014 Nano Lett. 14 3185
|
[36] |
Thangaraja A, Shinde S M, Kalita G and Tanemura M 2015 Mater. Lett. 156 156
|
[37] |
Pumera M and Loo A H 2014 TrAC Trends in Analytical Chemistry 61 49
|
[38] |
Zhou L, Yan S, Lin Z and Shi Y 2016 Mater. Chem. Phys. 171 16
|
[39] |
Gao Y, Liu Z, Sun DM, Huang L, Ma LP, Yin LC, Ma T, Zhang Z, Ma X L, Peng L M, Cheng H M and Ren W 2015 Nat. Commun. 6 8569
|
[40] |
Clark R M, Carey B J, Daeneke T, Atkin P, Bhaskaran M, Latham K, Cole I S and Kalantar-Zadeh K 2015 Nanoscale 7 16763
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|