CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic and thermoelectric properties of Mg2GexSn1-x (x=0.25, 0.50, 0.75) solid solutions by first-principles calculations |
Kai-yue Li(李开跃), Yong Lu(鲁勇), Yan Huang(黄艳), Xiao-hong Shao(邵晓红) |
College of Science, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract The electronic structure and thermoelectric (TE) properties of Mg2GexSn1-x (x=0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure (SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results. The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor (PF) plays an important role. These values are higher than those of pure Mg2Sn and Mg2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg2Ge0.25Sn0.75 at 800 K. The results suggest that the n-type Mg2GexSn1-x solid solutions are promising mid-temperature TE materials.
|
Received: 18 January 2017
Revised: 04 March 2017
Accepted manuscript online:
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11647010) and the Foundation from the Higher Education and High-quality and World-class Universities (Grant No. PY201611). |
Corresponding Authors:
Yong Lu, Xiao-hong Shao
E-mail: luy@mail.buct.edu.cn;shaoxh@mail.buct.edu.cn
|
Cite this article:
Kai-yue Li(李开跃), Yong Lu(鲁勇), Yan Huang(黄艳), Xiao-hong Shao(邵晓红) Electronic and thermoelectric properties of Mg2GexSn1-x (x=0.25, 0.50, 0.75) solid solutions by first-principles calculations 2017 Chin. Phys. B 26 066103
|
[1] |
Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
|
[2] |
Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[3] |
Zhao L D, Berardan D, Pei Y L, Byl C, Pinsard-Gaudart L and Dragoe N 2010 Appl. Phys. Lett. 97 092118
|
[4] |
Barreteau C, Pan L, Amzallag E, Zhao L D, Berardan D and Dragoe N 2014 Semicond. Sci. Technol. 29 64001
|
[5] |
Barreteau C, Pan L, Pei Y L, Zhao L D, Berardan D and Dragoe N 2013 Funct. Mater. Lett. 6 1340007
|
[6] |
Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M and Eibl O 2014 Acta Mater. 63 30
|
[7] |
Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
|
[8] |
Sakurada S and Shutoh N 2005 Appl. Phys. Lett. 86 82105
|
[9] |
Djaafri T, Djaafri A, Elias A, Murtaza G, Khenata R, Ahmed R and Rached D 2014 Chin. Phys. B 23 087103
|
[10] |
Brown D R, Day T, Caillat T and Snyder G J 2013 J. Electron. Mater. 42 2014
|
[11] |
Tan X, Shao H, Hu T, Liu G, Jiang J and Jiang H 2015 Phys. Chem. Chem. Phys. 17 22872
|
[12] |
Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207
|
[13] |
Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601
|
[14] |
Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J and Zhao X B 2013 Adv. Energy Mater. 3 1238
|
[15] |
Liu W, Tang X and Sharp J 2010 J. Phys. D: Appl. Phys. 43 085406
|
[16] |
Khan A U, Vlachos N V, Hatzikraniotis E, Polymeris G S, Lioutas C B, Stefanaki E C, Paraskevopoulos K M, Giapintzakis I and Kyratsi T 2014 Acta Mater. 77 43
|
[17] |
Gao P, Berkun I, Schmidt R, Luzenski M, Lu X, Bordon Sarac P, Case E and Hogan T 2013 J. Electron. Mater. 43 1790
|
[18] |
Dasgupta T, Stiewe C, Boor J D and Müller E 2014 Phys. Status Solidi 211 1250
|
[19] |
Sun J F and Singh D J 2016 Phys. Rev. Appl. 5 024006
|
[20] |
Yang M J, Shen Q and Zhang L M 2011 Chin. Phys. B 20 106202
|
[21] |
Busch G and Winkler U 1954 Physica 3 1067
|
[22] |
Liu W, Kim H S, Chen S, Jie Q, Lv B, Yao M, Ren Z, Opeil C P, Wilson S, Chu C W and Ren Z 2015 Proc. Natl. Acad. Sci. USA 112 3269
|
[23] |
Jiang G, Chen L, He J, Gao H, Du Z, Zhao X, Tritt T M and Zhu T 2013 Intermetallics 32 312
|
[24] |
Boor J D, Saparamadu U, Mao J, Dahal K, Müller E and Ren Z 2016 Acta Materialia 120 273
|
[25] |
Nakatsuji H 1979 Chem. Phys. Lett. 67 329
|
[26] |
Zunger A, Wei S, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
|
[27] |
Souvatzis P, Katsnelson M I, Simak S, Ahuja R, Eriksson O and Mohn P 2004 Phys. Rev. B 70 012201
|
[28] |
Doak J W, Wolverton C and Ozolins V 2015 Phys. Rev. B 92 174306
|
[29] |
Kim J, Kwon H, Kim J H, Roh K M, Shin D and Jang H D 2015 J. Alloys Compd. 619 788
|
[30] |
Xie Y P and Zhao S J 2011 Comput. Mater. Sci. 50 2586
|
[31] |
Fedorov M I, Zaitsev V K, Eremin I S and Gurieva E A 2006 Phys. Solid State 48 1486
|
[32] |
Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2005 24 th International conference on thermoelectrics, IEEE, June 19-23, 2005, Clemson, USA, pp. 204-210
|
[33] |
Chakraborty M, Spitaler J, Puschnig P and Ambrosch-Draxl C 2010 Comput. Phys. Commun. 181 913
|
[34] |
Kresse G and Furthmöller J 1999 Phys. Rev. B 54 11169
|
[35] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[37] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[38] |
Togo A and Tanaka I 2015 Scr. Mater. 108 1
|
[39] |
Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 "WIEN2K", An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Schwarz K, Tech. Univ. Wien, Austria)
|
[40] |
Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
|
[41] |
Engel E and Vosko S H 1993 Phys. Rev. B 47 13164
|
[42] |
Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
|
[43] |
Singh D J 2007 Phys. Rev. B 76 085110
|
[44] |
Parker D and Singh D J 2011 Phys. Rev. X 1 021005
|
[45] |
Parker D and Singh D J 2010 Phys. Rev. B 82 035204
|
[46] |
Bader R F W 1985 Acc. Chem. Res. 18 9
|
[47] |
Benhelal O, Chahed A, Laksari S, Abbar B, Bouhafs B and Aourag H 2005 Phys. Status Solidi 242 2022
|
[48] |
Blanco A A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
|
[49] |
Nye J F 1985 Physical Properties of Crystals (Oxford University Press)
|
[50] |
Luo D, Wang Y, Yan Y, Yang G and Yang J 2014 J. Mater. Chem. A 2 15159
|
[51] |
Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P and Kanatzidis M G 2011 Nat. Chem. 3 160
|
[52] |
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
|
[53] |
Jin Y R, Feng Z, Ye L, Yan Y and Wang Y 2016 RSC Adv. 6 48728
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|