Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064207    DOI: 10.1088/1674-1056/26/6/064207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavelength modulation spectroscopy for measurements of gas parameters in combustion field

Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎)
State Key Laboratory of Laser Propulsion & Applications, Equipment Academy, Beijing 101416, China
Abstract  A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O transitions near 7185.60 cm-1 and 7454.45 cm-1 that are used to enable the measurements along the line-of-sight. According to an iterative algorithm, the gas pressure, temperature and species mole fraction can be measured simultaneously. The new sensor is used in the isolator and extender of the supersonic combustion test facility. In the isolator, the sensor resolves the transient and measured pressure, temperature and H2O mole fraction with accuracies of 2.5%, 8.2%, and 7.2%, respectively. Due to the non-uniform characteristic in the extender, the measured results cannot precisely characterize gas properties, but they can qualitatively describe the distinctions of different zones or the changes or fluctuations of the gas parameters.
Keywords:  wavelength modulation spectroscopy      sensor      gas properties      iterative algorithm  
Received:  31 October 2016      Revised:  15 February 2017      Accepted manuscript online: 
PACS:  42.68.Ca (Spectral absorption by atmospheric gases)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21403299).
Corresponding Authors:  Dong-Sheng Qu     E-mail:  hnqudongsheng@126.com

Cite this article: 

Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎) Wavelength modulation spectroscopy for measurements of gas parameters in combustion field 2017 Chin. Phys. B 26 064207

[1] Hodgkinson J and Ralph P T 2013 Meas. Sci. Technol. 24 012004
[2] Bolshov M A, Kuritsyn Y A and Romanovskii 2015 Spectrochimica Acta B 106 45
[3] Krishna Y and O'Byrne Sean 2016 J. Indian I Sci. 96 18
[4] Hanson R K 2011 Proc. Combust. Inst. 33 1
[5] Goldenstein C S, Jeffries J B and Hanson R K 2013 J. Quantum Spectrosc. Radiat. Transfer 130 100
[6] Sun K, Sur R, Chao X, Jeffries J B, Hanson R K, Pummill R J and Whitty K J 2013 Proc. Combust. Inst. 34 3593
[7] Jatana G S, Magee M, Fain D, Naik SV, Shaver G M and Lucht R P 2015 Appl. Opt. 54 1220
[8] Philippe L C and Hanson R K 1993 Appl. Opt. 32 6090
[9] Li H J, Rieker G B, Liu X, Jeffries J B and Hanson R K 2006 Appl. Opt. 45 1052
[10] Rieker G B, Jeffries J B and Hanson R K 2009 Appl. Opt. 48 5546
[11] Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R and Carter C D 2009 Proc. Combust. Inst. 32 831
[12] Goldenstein C S, Spearrin R M, Jeffries J B and Hanson R K 2015 Proc. Combust. Inst. 35 3739
[13] Schultz I A, Goldenstein C S, Spearrin R M, Jeffries J B and Hanson R K 2014 J. Propul. Power 30 1595
[14] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B and Hanson R K 2014 Appl. Phys. B 116 717
[15] Goldenstein C S, Almdovar C A, Jeffries J B, Hanson R K and Brophy C M 2014 Meas. Sci. Technol. 25 105104
[16] Chao X, Jeffries J B and Hanson R K 2013 Proc. Combust. Inst. 34 3583
[17] Sur R, Sun K, Jeffries J B, Socha J G and Hanson R K 2015 Fuel 150 102
[18] Sur R, Sun K, Jeffries J B and Hanson R K 2014 Appl. Phys. B 115 9
[19] Che L, Ding Y J, Peng Z M and Li X H 2012 Chin. Phys. Lett. 29 067801
[20] Rothmana L S, Gordon I E, Babikov Y, et al. 2013 J. Quantum Spectrosc. Radiat. Transfer 130 4
[21] Goldenstein C S, Jeffries J B and Hanson R K 2013 J. Quantum Spectrosc. Radiat. Transfer 130 100
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[8] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
No Suggested Reading articles found!