Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064206    DOI: 10.1088/1674-1056/26/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber

Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲)
Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  We investigate theoretically and numerically the evolutions of optical pulses in the time domain due to modulation instability (MI), where CW pump accompanied with a probe is used as the input of nonlinear fiber. As the fiber length increases, we show that it exhibits beat frequency between the pump and the probe first when the probe lies outside the MI resonance region, and then gradually transforms into a pulse train resulting from spontaneous MI rather than induced MI. However, the regular pulse train is easier to generate in the whole fiber if the probe exists in MI resonance region, and the period of the pulse train is inversely proportional to the frequency spacing between the pump and the probe. It is emphasized that the pulse period can be adjusted only when the probe is in MI resonance region. The numerical simulations are in agreement with the theoretical results. The obtained results are guidable for generating and manipulating the optical pulse train in the fiber.
Keywords:  modulation instability      pulse      fiber      resonance region  
Received:  20 December 2016      Revised:  13 February 2017      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505258) and the Scientific Research Project of National University of Defense Technology (Grant No. JC15-11-02).
Corresponding Authors:  Wei Chen     E-mail:  kevinkobegames@126.com

Cite this article: 

Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲) Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber 2017 Chin. Phys. B 26 064206

[1] Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press)
[2] Wang H L, Yang A J and Leng Y X 2013 Chin. Phys. B 22 074208
[3] Zhong X Q, Cheng K and Xiang A P 2013 Chin. Phys. B 22 034205
[4] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
[5] Tai K, Tomita A, Jewell J L and Hasegawa A 1986 Appl. Phys. Lett. 49 236
[6] Grosz D F and Fragnito H L 1998 Microwave Opt. Technol. Lett. 18 275
[7] Grosz D F, Mazzali C, Celaschi S, Paradisi A and Fragnito H L 1999 IEEE Photon. Technol. Lett. 11 379
[8] Liu X M 2011 J. Lightwave Technol. 29 179
[9] Chen W, Meng Z and Zhou H J 2012 Chin. Phys. B 21 094215
[10] Mussot A, Kudlinski A, Kolobov M, Louvergneaux E, Douay M and Taki M 2009 Opt. Express 17 17010
[11] Chen W 2013 "Influences and Suppression Techniques of Nonlinear Effects on Long-Haul Interferometric Fiber Sensing Systems", Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[12] Leo F, Hansson T, Ricciardi I, De Rosa M, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. A 93 043831
[13] Droques M, Barviau B, Kudlinski A, Taki M, Boucon A, Sylvestre T and Mussot A 2011 Opt. Lett. 36 1359
[14] Van Simaeys G, Emplit P and Haelterman M 2002 J. Opt. Soc. Am. B 19 477
[15] Soto-Crespo J M, Ankiewicz A, Devine N and Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930
[16] Alem M, Soto M A and Thévenaz L 2015 Opt. Express 23 29514
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[7] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[10] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[11] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[12] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[13] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[14] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[15] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
No Suggested Reading articles found!