Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058503    DOI: 10.1088/1674-1056/ac3819

MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation

Bing Zhang(张冰)1,2,†, Congzhen Hu(胡从振)1,2, Youze Xin(辛有泽)1,2, Yaoxin Li(李垚鑫)1,2, Zhuoqi Guo(郭卓奇)1,2, Zhongming Xue(薛仲明)1,2, Li Dong(董力)1,2, Shanzhe Yu(于善哲)3, Xiaofei Wang(王晓飞)1,2, Shuyu Lei(雷述宇)4, and Li Geng(耿莉)1,2
1 School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China;
2 Key Laboratory of Micro-nano Electronics and System Integration of Xi'an City, Xi'an 710049, China;
3 National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China;
4 ABAX Sensing Inc., Ningbo 315500, China
Abstract  By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer, and storage in the four-transistor active pixel sensor (4T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes (PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates (TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion (FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μ m test pixel designed in 0.11 μm CIS process.
Keywords:  four-transistor active pixel sensor (4T-APS)      nonuniform doping      SPICE model      transfer gate      variable capacitance  
Received:  09 September 2021      Revised:  04 November 2021      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61874085) and the Postdoctoral Research Funding Project of Shaanxi Province,China (Grant No.2018BSHEDZZ41).
Corresponding Authors:  Bing Zhang,     E-mail:
About author:  2021-11-10

Cite this article: 

Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉) MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation 2022 Chin. Phys. B 31 058503

[1] Inoue I, Tanaka N, Yamashita H, Yamaguchi T, Ishiwata H and Ihara H 2003 IEEE Trans. Electron. Dev. 50 43
[2] Senda K, Terakawa S, Hiroshima Y and Kunii T 1984 IEEE Trans. Electron. Dev. 31 1324
[3] Fossum E R and Hondongwa D B 2014 IEEE J. Electron Dev. Soc. 2 33
[4] Hagiwara T 1996 IEEE Trans. Electron. Dev. 43 2122
[5] Pelamatti A, Goiffon V, Estribeau M, Cervantes P and Magnan P 2013 IEEE Electron Dev. Lett. 34 900
[6] Marcelot O, Goiffon V, Nallet F and Magnan P 2016 IEEE Trans. Electron. Dev. 64 455
[7] Rizzolo S, Goiffon V, Estribeau M, Marcelot O, Martin G P and Magnan P 2018 IEEE Trans. Electron. Dev. 65 1048
[8] Sun Y, Zhang P, Xu J T Gao Z Y and Xu C 2012 Chin. J. Semicond. 33 124004
[9] Cao S, Zhang B, Li X, Wu L S and Wang J F 2014 Chin. J. Semicond. 35 114009
[10] Bonjour L, Blanc N and Kayal M 2012 IEEE Electron. Dev. Lett. 33 1735
[11] Teranishi N, Kohono A, Ishihara Y, Oda E and Arai K 1982 International Electron Devices Meeting, December 13-15, 1982, San Francisco, USA, p. 324
[12] Sarkar M, Buttgen B and Theuwissen A 2013 IEEE Trans. Electron. Dev. 60 1154
[13] Lavine J P and Banghart E K 1997 IEEE Trans. Electron. Dev. 44 1593
[14] Han L Q, Yao S Y and Theuwissen A J P 2016 IEEE Trans. Electron. Dev. 63 32
[15] Mutoh H 2003 IEEE Trans. Electron. Dev. 50 19
[16] Mheen B, Song Y J and Theuwissen A J P 2008 IEEE Electron Dev. Lett. 29 347
[17] Pelamatti A, Belloir J, Messien C, Goiffon V, Estribeau M, Magnan P, Virmontois C, Saint-Pé O and Paillet P 2015 IEEE Trans. Electron. Dev. 62 1200
[18] Gao Z Y, Xu J T, Zhou Y M and Nie K M 2016 IEEE Sensors J. 16 2367
[19] Cao C, Shen B L, Zhang B, Wu L S and Wang J F 2015 IEEE J. Electron. Dev. Soc. 3 306
[20] Chao Y P, Chen Y C, Chou K Y, Sze J J, Hsueh F L and Wuu S W 2014 IEEE J. Electron Dev. Soc. 2 59
[21] Khan U and Sarkar M 2018 IEEE Trans. Electron. Dev. 65 2892
[22] Goiffon V, Estribeau M, Michelot J, Cervantes P, Pelamatti A, Marcelot O and Magnan P 2014 IEEE J. Electron Dev. Soc. 2 65
[23] Filgueira K B, Martínez P L and Aranda J B R 2015 IEEE Trans. Electron. Dev. 63 16
[24] Xu Y, Ge X L and Theuwissen A J P 2016 IEEE Trans. Electron. Dev. 63 42
[25] Sze S M and Ng K K 2007 Physics Of Semiconductor Devices, 3rd edn. (Chichester: John Wiley & Sons) p. 501
[1] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[2] SPICE modeling of flux-controlled unipolar memristive devices
Fang Xu-Dong (方旭东), Tang Yu-Hua (唐玉华), Wu Jun-Jie (吴俊杰), Zhu Xuan (朱玄), Zhou Jing (周静), Huang Da (黄达). Chin. Phys. B, 2013, 22(7): 078901.
[3] SPICE modeling of memristors with multilevel resistance states
Fang Xu-Dong (方旭东), Tang Yu-Hua (唐玉华), Wu Jun-Jie (吴俊杰). Chin. Phys. B, 2012, 21(9): 098901.
No Suggested Reading articles found!