ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of femtosecond laser pulses at 263 nm by K3B6O10Cl crystal |
Ning-Hua Zhang(张宁华)1, Shao-Bo Fang(方少波)2, Peng He(何鹏)1, Hang-Dong Huang(黄杭东)1, Jiang-Feng Zhu(朱江峰)1, Wen-Long Tian(田文龙)1, Hong-Ping Wu(吴红萍)3, Shi-Lie Pan(潘世烈)3, Hao Teng(滕浩)2, Zhi-Yi Wei(魏志义)2 |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China |
|
|
Abstract The third harmonic generation (THG) of a linear cavity Ti:sapphire regenerative amplifier by use of a K3B6O10Cl (KBOC) crystal is studied for the first time. Output power up to 5.9 mW is obtained at a central wavelength of 263 nm, corresponding to a conversion efficiency of 4.5% to the second harmonic power. Our results show a tremendous potential for nonlinear frequency conversion into the deep ultraviolet range with the new crystal and the output laser power can be further improved.
|
Received: 11 December 2016
Revised: 03 February 2017
Accepted manuscript online:
|
PACS:
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
95.85.Mt
|
(Ultraviolet (10-300 nm))
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the Key Program of the National Natural Science Foundation of China (Grant Nos. 11434016 and 61575219), and the International Joint Research Program of the National Natural Science Foundation of China (Grant No. 61210017). |
Corresponding Authors:
Shi-Lie, Zhi-Yi Wei
E-mail: slpan@ms.xjb.ac.cn;zywei@iphy.ac.cn
|
Cite this article:
Ning-Hua Zhang(张宁华), Shao-Bo Fang(方少波), Peng He(何鹏), Hang-Dong Huang(黄杭东), Jiang-Feng Zhu(朱江峰), Wen-Long Tian(田文龙), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Hao Teng(滕浩), Zhi-Yi Wei(魏志义) Generation of femtosecond laser pulses at 263 nm by K3B6O10Cl crystal 2017 Chin. Phys. B 26 064208
|
[1] |
Mondal S and Puranik M 2016 Phys. Chem. Chem. Phys. 18 13874
|
[2] |
Yang C F, Su H M, Sun X D and George M W 2012 J. Chem. Phys. 136 204507
|
[3] |
Hertel I V and Radloff W 2006 Rep. Prog. Phys. 69 1897
|
[4] |
Mou D X, Sapkota A, Kung H H, Krapivin V, Wu Y, Kreyssig A, Zhou X J, Goldman A I, Blumberg G, Flint R and Kaminski A 2016 Phys. Rev. Lett. 116 196401
|
[5] |
Mou D X, Konik R M, Tsvelik A M, Zaliznyak I and Zhou X J 2014 Phys. Rev. B 89 201116
|
[6] |
Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K and Lin S J 1989 J. Opt. Soc. Am. B 6 616
|
[7] |
Chen C T, Wu B C, Jiang A D and You G M 1985 Sci. Sin. B 28 235
|
[8] |
Mori Y, Kuroda I, Nakajima S, Sasaki T and Nakai S 1995 Appl. Phys. Lett. 67 1818
|
[9] |
Hellwig H, Liebertz J and Bohaty L 1999 Solid State Commun. 109 249
|
[10] |
Mei L F, Wang Y B, Chen C T and Wu B C 1993 J. Appl. Phys. 74 7014
|
[11] |
Togashi T, Kanai T, Sekikawa T, Watanabe S, Chen C T, Zhang C Q, Xu Z Y and Wang J Y 2003 Opt. Lett. 28 254
|
[12] |
Dai S B, Zong N, Yang F, Zhang S J, Wang Z M, Zhang F F, Tu W, Shang L Q, Liu L J, Wang X Y, Zhang J Y, Cui D F, Peng Q J, Li R K, Chen C T and Xu Z Y 2015 Opt. Lett. 40 3286
|
[13] |
Seifert F, Ringling J, Noack F, Petrov V and Kittelmann O 1994 Opt. Lett. 19 1538
|
[14] |
Kumar S C, Bautista E S and Ebrahim-Zadeh M 2015 Opt. Lett. 40 403
|
[15] |
Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M and Lin W X 2015 Acta Phys. Sin. 64 164205 (in Chinese)
|
[16] |
Wu H P, Yu H M, Yang Z H, Han J, Wu K and Pan S L 2015 J. Materiomics 1 221
|
[17] |
Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M and Luo H S 2011 J. Am. Chem. Soc. 133 7786
|
[18] |
Wang H, Kong L Y, Zhao X Y, Lv Z L, Li T W, Ju W W, You J H and Bai Y 2013 Appl. Phys. Lett. 103 101902
|
[19] |
Han H, Yin G and Wickramaratne D 2013 Comput. Mater. Sci. 69 81
|
[20] |
Gong X Y, Zhao X Y, Lv Z L, Li T W, You J H and Wang H 2014 Comput. Mater. Sci. 83 86
|
[21] |
Wu H P, Pan S L, Yu H W, Jia D Z, Chang A M, Li H Y, Zhang F F and Huang X 2012 Cryst. Eng. Commum. 14 799
|
[22] |
Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B and Wei Z Y 2016 Chin. Phys. B 25 124204
|
[23] |
Smith A V, "SNLO", http://www.as-photonics.com/snlo
|
[24] |
He P, Teng H, Zhang N H, Liu Y Y, Wang Z H and Wei Z Y 2016 Acta Phys. Sin. 65 244202 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|