Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054202    DOI: 10.1088/1674-1056/26/5/054202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum-mathematical model of edge and peak point in Fresnel diffraction through a slit

Xiao-He Luo(罗晓贺), Hui Mei(惠梅), Qiu-Dong Zhu(朱秋东), Shan-Shan Wang(王姗姗), Yin-Long Hou(侯银龙)
Beijing Key Laboratory of Precision Photoelectric Measuring Instrument and Technology, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The intensity distribution in Fresnel diffraction through a slit includes numerous small fluctuations referred to as ripples. These ripples make the modelling of the intensity distribution complicated. In this study, we examine the characteristics of the Fresnel diffraction intensity distribution to deduce the rule for the peak position and then propose two types of quantum-mathematical models to obtain the distance between the edge and the peak point. The analysis and simulation indicate that the error in the models is below 0.50 μm. The models can also be used to detect the edges of a diffraction object, and we conduct several experiments to measure the slit width. The experimental results reveal that the repetition accuracy of the method can reach 0.23 μm.
Keywords:  Fresnel diffraction      slit      peak point      edge  
Received:  24 October 2016      Revised:  19 December 2016      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475018).
Corresponding Authors:  Hui Mei     E-mail:  huim@bit.edu.cn

Cite this article: 

Xiao-He Luo(罗晓贺), Hui Mei(惠梅), Qiu-Dong Zhu(朱秋东), Shan-Shan Wang(王姗姗), Yin-Long Hou(侯银龙) Quantum-mathematical model of edge and peak point in Fresnel diffraction through a slit 2017 Chin. Phys. B 26 054202

[1] Liu J 2016 Chin. Phys. B 25 076106
[2] Diemoz P C, Vittoria F A and Olivo A 2014 Opt. Express 22 15514
[3] Gayer C W, Hemmers D, Stelzmann C and Pretzler G 2013 Opt. Lett. 38 1563
[4] Lee W K, Cloethens P and Schlenker M 2004 Acta Cryst. A 60 58
[5] Langlois P, Lessard R A and Boivin A 1985 Appl. Opt. 24 1107
[6] Fukaya J, Sasaki A, Matsuda Y and Aoyama H 1985 Appl. Opt. 34 7820
[7] Xie Y, Zakharian A R, Moloney J V and Mansuripur M 2004 Opt. Express 12 6106
[8] Chen J, Kuang D F and Fang Z L 2009 Chin. Phys. Lett. 26 094210
[9] Pu J X, Cai C, Hu X D and Liu X Y 2005 Chin. Phys. Lett. 22 2259
[10] Teng S Y, Cheng C F, Liu M, Liu L R and Xu Z Z 2003 Acta Phys. Sin. 52 316 (in Chinese)
[11] Song H S, Liu M, Liu G Y, Xu Z W, Teng S Y and Cheng C F 2010 Chin. Phys. B 19 124202
[12] Case W B, Sadurni E and Schleich W P 2012 Opt. Express 20 27253
[13] Modregger P, Lubbert D, Schafer P, Kohler R, Weitkamp T, Hanke M and Baumbach T 2008 Opt. Express 16 5141
[14] Shimobaba T, Masuda N and Ito T 2012 Opt. Express 20 9335
[15] Umul Y Z 2005 Opt. Express 13 8469
[16] Maqsood M W, Mehfuz R and Chau K J 2010 Opt. Express 18 21669
[17] Wang Z L, Zhou M, Gao C Y and Zhang W 2012 Chin. Phys. B 21 064202
[18] Lei Z M, Sun X Y, Lv F N, Zhang Z and Lu X Q 2016 Chin. Phys. B 25 114201
[19] Song Y, Hao Q and Li D C 2006 Proc. SPIE 6150
[20] Southwell W H 1981 J. Opt. Soc. Am 71 7
[21] Xie J H, Zhao D Z and Yan J X 2012 Physical Optics Coursebook (Beijing: Beijing Institute of Technology Press) pp. 220-222 (in Chinese)
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[3] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[4] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[11] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[12] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[13] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[14] On the origin of the anomalous sign reversal in the Hall effect in Nb thin films
Dan Zhou(周丹), Han-Song Zeng(曾寒松), Rujun Tang(汤如俊), Zhihong Hang(杭志宏), Zhiwei Hu(胡志伟), Zixi Pei(裴子玺), and Xinsheng Ling(凌新生). Chin. Phys. B, 2022, 31(3): 037403.
[15] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
No Suggested Reading articles found!