|
|
Matter wave interference of dilute Bose gases in the critical regime |
Xuguang Yue(乐旭广)1,2, Shujuan Liu(刘淑娟)1,2, Biao Wu(吴飙)1,3,4, Hongwei Xiong(熊宏伟)1,2 |
1 Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310023, China;
2 Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China;
3 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Ultra-cold atomic gases provide a new chance to study the universal critical behavior of phase transition. We study theoretically the matter wave interference for ultra-cold Bose gases in the critical regime. We demonstrate that the interference in the momentum distribution can be used to extract the correlation in the Bose gas. A simple relation between the interference visibility and the correlation length is found and used to interpret the pioneering experiment about the critical behavior of dilute Bose gases [Science 315 1556 (2007)]. Our theory paves the way to experimentally study various types of ultra-cold atomic gases with the means of matter wave interference.
|
Received: 16 December 2016
Revised: 20 February 2017
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504328, 11274024, and 11334001) and the National Basic Research Program of China (Grants Nos. 2013CB921903 and 2012CB921300). |
Corresponding Authors:
Hongwei Xiong
E-mail: hwxiong@zjut.edu.cn
|
Cite this article:
Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟) Matter wave interference of dilute Bose gases in the critical regime 2017 Chin. Phys. B 26 050501
|
[1] |
Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
|
[2] |
Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
|
[3] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[4] |
Greiner M, Mandel O, Esslinger T, Hánsch T W and Bloch I 2002 Nature 415 3944
|
[5] |
Polkovnikov A, Altman E and Demler E 2006 Proc. Natl. Acad. Sci. USA 103 6125
|
[6] |
Gritsev V, Altman E, Demler E and Polkovnikov A 2006 Nat. Phys. 2 705
|
[7] |
Polkovnikov A 2007 Europhys. Lett. 78 10006
|
[8] |
Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118
|
[9] |
Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E and Schmiedmayer J 2008 Nat. Phys. 4 489
|
[10] |
Fang B, Johnson A, Roscilde T and Bouchoule I 2016 Phys. Rev. Lett. 116 050402
|
[11] |
Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I and Clément D 2016 Phys. Rev. Lett. 117 235303
|
[12] |
Javanainen J and Yoo S M 1996 Phys. Rev. Lett. 76 161
|
[13] |
Cirac J I, Gardiner C W, Naraschewski M and Zoller P 1996 Phys. Rev. A 54 R3714
|
[14] |
Castin Y and Dalibard J 1997 Phys. Rev. A 55 4330
|
[15] |
Xiong H, Liu S and Zhan M 2006 New J. Phys. 8 245
|
[16] |
Cederbaum L S, Streltsov A I, Band Y B and Alon O E 2007 Phys. Rev. Lett. 98 110405
|
[17] |
Liu S and Xiong H 2007 New J. Phys. 9 412
|
[18] |
Masiello D J and Reinhardt W P 2007 Phys. Rev. A 76 043612
|
[19] |
Paraoanu G S 2008 Phys. Rev. A 77 041605
|
[20] |
Simon J, Bakr W S, Ma R, Tai M E, Preiss P M and Greiner M 2011 Nature 472 307
|
[21] |
Zhang X, Hung C L, Tung S K and Chin C 2012 Science 335 1070
|
[22] |
Hung C L, Zhang X, Gemelke N and Chin C 2011 Nature 470 236
|
[23] |
Ku M J H, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563
|
[24] |
Kato Y, Zhou Q, Kawashima N and Trivedi N 2008 Nat. Phys. 4 617
|
[25] |
Campostrini M and Vicari E 2009 Phys. Rev. Lett. 102 240601
|
[26] |
Zhou Q and Ho T L 2010 Phys. Rev. Lett. 105 245702
|
[27] |
Diehl S, Baranov M, Daley A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
|
[28] |
Guan X W and Ho T L 2011 Phys. Rev. A 84 023616
|
[29] |
Yin X, Guan X W, Chen S and Batchelor M T 2011 Phys. Rev. A 84 011602
|
[30] |
Kuhn C C N, Guan X W, Foerster A and Batchelor M T 2012 Phys. Rev. A 85 043606
|
[31] |
Kuhn C C N, Guan X W, Foerster A and Batchelor M T 2012 Phys. Rev. A 86 011605
|
[32] |
Hazzard K R A and Mueller E J 2011 Phys. Rev. A 84 013604
|
[33] |
Fang S, Chung C M, Ma P N, Chen P and Wang D W 2011 Phys. Rev. A 83 031605
|
[34] |
Donner T, Ritter S, Bourdel T, Oťtl A, Koħl M and Esslinger T 2007 Science 315 1556
|
[35] |
Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press)
|
[36] |
Chaikin P M and Lubensky T C 2000 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
|
[37] |
Privman V, Hohenberg P C and Aharony A 1991 Universal Critical-Point Amplitude Relations (New York: Academic Press) pp. 1-134
|
[38] |
Xiong W, Zhou X, Yue X, Chen X, Wu B and Xiong H 2013 Laser Phys. Lett. 10 125502
|
[39] |
Bourdel T, Donner T, Ritter S, Oťtl A, Koħl M and Esslinger T 2006 Phys. Rev. A 73 043602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|