Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 050501    DOI: 10.1088/1674-1056/26/5/050501
GENERAL Prev   Next  

Matter wave interference of dilute Bose gases in the critical regime

Xuguang Yue(乐旭广)1,2, Shujuan Liu(刘淑娟)1,2, Biao Wu(吴飙)1,3,4, Hongwei Xiong(熊宏伟)1,2
1 Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310023, China;
2 Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China;
3 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

Ultra-cold atomic gases provide a new chance to study the universal critical behavior of phase transition. We study theoretically the matter wave interference for ultra-cold Bose gases in the critical regime. We demonstrate that the interference in the momentum distribution can be used to extract the correlation in the Bose gas. A simple relation between the interference visibility and the correlation length is found and used to interpret the pioneering experiment about the critical behavior of dilute Bose gases [Science 315 1556 (2007)]. Our theory paves the way to experimentally study various types of ultra-cold atomic gases with the means of matter wave interference.

Keywords:  phase transition      critical correlation      matter wave interference      ultra-cold atomic gases  
Received:  16 December 2016      Revised:  20 February 2017      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504328, 11274024, and 11334001) and the National Basic Research Program of China (Grants Nos. 2013CB921903 and 2012CB921300).

Corresponding Authors:  Hongwei Xiong     E-mail:  hwxiong@zjut.edu.cn

Cite this article: 

Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟) Matter wave interference of dilute Bose gases in the critical regime 2017 Chin. Phys. B 26 050501

[1] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[2] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[3] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[4] Greiner M, Mandel O, Esslinger T, Hánsch T W and Bloch I 2002 Nature 415 3944
[5] Polkovnikov A, Altman E and Demler E 2006 Proc. Natl. Acad. Sci. USA 103 6125
[6] Gritsev V, Altman E, Demler E and Polkovnikov A 2006 Nat. Phys. 2 705
[7] Polkovnikov A 2007 Europhys. Lett. 78 10006
[8] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118
[9] Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E and Schmiedmayer J 2008 Nat. Phys. 4 489
[10] Fang B, Johnson A, Roscilde T and Bouchoule I 2016 Phys. Rev. Lett. 116 050402
[11] Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I and Clément D 2016 Phys. Rev. Lett. 117 235303
[12] Javanainen J and Yoo S M 1996 Phys. Rev. Lett. 76 161
[13] Cirac J I, Gardiner C W, Naraschewski M and Zoller P 1996 Phys. Rev. A 54 R3714
[14] Castin Y and Dalibard J 1997 Phys. Rev. A 55 4330
[15] Xiong H, Liu S and Zhan M 2006 New J. Phys. 8 245
[16] Cederbaum L S, Streltsov A I, Band Y B and Alon O E 2007 Phys. Rev. Lett. 98 110405
[17] Liu S and Xiong H 2007 New J. Phys. 9 412
[18] Masiello D J and Reinhardt W P 2007 Phys. Rev. A 76 043612
[19] Paraoanu G S 2008 Phys. Rev. A 77 041605
[20] Simon J, Bakr W S, Ma R, Tai M E, Preiss P M and Greiner M 2011 Nature 472 307
[21] Zhang X, Hung C L, Tung S K and Chin C 2012 Science 335 1070
[22] Hung C L, Zhang X, Gemelke N and Chin C 2011 Nature 470 236
[23] Ku M J H, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563
[24] Kato Y, Zhou Q, Kawashima N and Trivedi N 2008 Nat. Phys. 4 617
[25] Campostrini M and Vicari E 2009 Phys. Rev. Lett. 102 240601
[26] Zhou Q and Ho T L 2010 Phys. Rev. Lett. 105 245702
[27] Diehl S, Baranov M, Daley A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
[28] Guan X W and Ho T L 2011 Phys. Rev. A 84 023616
[29] Yin X, Guan X W, Chen S and Batchelor M T 2011 Phys. Rev. A 84 011602
[30] Kuhn C C N, Guan X W, Foerster A and Batchelor M T 2012 Phys. Rev. A 85 043606
[31] Kuhn C C N, Guan X W, Foerster A and Batchelor M T 2012 Phys. Rev. A 86 011605
[32] Hazzard K R A and Mueller E J 2011 Phys. Rev. A 84 013604
[33] Fang S, Chung C M, Ma P N, Chen P and Wang D W 2011 Phys. Rev. A 83 031605
[34] Donner T, Ritter S, Bourdel T, Oťtl A, Koħl M and Esslinger T 2007 Science 315 1556
[35] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press)
[36] Chaikin P M and Lubensky T C 2000 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[37] Privman V, Hohenberg P C and Aharony A 1991 Universal Critical-Point Amplitude Relations (New York: Academic Press) pp. 1-134
[38] Xiong W, Zhou X, Yue X, Chen X, Wu B and Xiong H 2013 Laser Phys. Lett. 10 125502
[39] Bourdel T, Donner T, Ritter S, Oťtl A, Koħl M and Esslinger T 2006 Phys. Rev. A 73 043602
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!