Time-energy high-dimensional one-side device-independent quantum key distribution
Hai-Ze Bao(包海泽)1,2, Wan-Su Bao(鲍皖苏)1,2, Yang Wang(汪洋)1,2, Rui-Ke Chen(陈瑞柯)1,2, Hong-Xin Ma(马鸿鑫)1,2, Chun Zhou(周淳)1,2, Hong-Wei Li(李宏伟)1,2
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Compared with full device-independent quantum key distribution (DI-QKD), one-side device-independent QKD (1sDI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time-energy entropic uncertainty relations, we present a time-energy high-dimensional one-side device-independent quantum key distribution (HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice's different detection efficiencies. The results show that our protocol can performance much better than the original 1sDI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice's detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel.
Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grants Nos. 11304397 and 61505261).
Corresponding Authors:
Wan-Su Bao
E-mail: 2010thzz@sina.com
Cite this article:
Hai-Ze Bao(包海泽), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Rui-Ke Chen(陈瑞柯), Hong-Xin Ma(马鸿鑫), Chun Zhou(周淳), Hong-Wei Li(李宏伟) Time-energy high-dimensional one-side device-independent quantum key distribution 2017 Chin. Phys. B 26 050302
[1]
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2014 Nat. Photon. 8 595
[3]
Makarov V and Hjelme D R J. Mod. Opt. 52 691
[4]
Makarov V and Skaar J 2008 Quant. Inf. Comp. 8 0622
[5]
Wiechers C, Lydersen L, Wittmann C, Else D, Skaar J, Marquardt C, Makarov V and Leuchs G 2011 New J. Phys. 13 013043
[6]
Weier H, Krauss H, Rau M, Fürst M, Nauerth S and Weinfurter H 2011 New J. Phys. 13 073024
[7]
Li H, Wang S, Huang J, Chen W, Yin Z, Li F, Zhou Z, Liu D, Zhang Y, Guo G, Bao W and Han Z 2011 Phys. Rev. A 84 062308
[8]
Bennett C H and Brassard G 1984 in Proceedings IEEE International Conference on Computers, Systems and Signal Processing, 1984 Bangalore, India, pp. 175-179
[9]
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[10]
Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[11]
Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[12]
Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[13]
Li F Y, Wang D, Wang S, Li M, Yin Z Q, Li H W, Chen W and Han Z F 2014 Chin. Phys. B 23 124201
[14]
Garapo K, Mafu M and Petruccione F 2016 Chin. Phys. B 25 070303
[15]
Gu Y B, Bao W S, Wang Y and Chou C 2016 Chin. Phys. Lett. 33 040301
[16]
Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 030302 (in Chinese)
[17]
Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[18]
Wang Y, Bao W S, Zhou C, Jiang M S and Li H W 2016 Phys. Rev. A 94 032335
[19]
Wang Y, Bao W S, Li H W, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[20]
Acín a, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[21]
Pironio S, Acín A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[22]
Bell J S 1964 Physics 1 195
[23]
Gallego R, Brunner N, Hadley C and Acín A 2010 Phys. Rev. Lett. 105 230501
[24]
Pawlowski M and Brunner N 2011 Phys. Rev. A 84 010302
[25]
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[26]
Braunstein S L and Pirandola S 2012 Phys. Rev. Lett. 108 130502
[27]
Wang C, Wang S, Yin Z Q, Chen W, Li H W, Zhang C M, Ding Y Y, Guo G C and Han Z F 2016 Opt. Lett. 41 5596
[28]
Wang C, Song X T, Yin Z Q, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[29]
Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
[30]
Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[31]
Zhou C, Bao W, Zhang H, Li H, Wang Y, Li Y and Wang X 2015 Phys. Rev. A 91 022313
[32]
Chen R, Bao W, Wang Y, Bao H, Zhou C and Li H 2016 Opt. Express 24 6594
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.