Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046802    DOI: 10.1088/1674-1056/26/4/046802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of deposited temperatures of the buffer layer on the band offset of CZTS/In2S3 heterostructure and its solar cell performance

Jinling Yu(俞金玲)1,2, Zhongming Zheng(郑重明)1, Limei Dong(董丽美)1, Shuying Cheng(程树英)1,2, Yunfeng Lai(赖云锋)1, Qiao Zheng(郑巧)1, Haifang Zhou(周海芳)1, Hongjie Jia(贾宏杰)1, Hong Zhang(张红)1
1 Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
2 Jiangsu Collaborative Innovation Center of Photovolatic, Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract  The effect of the deposition temperature of the buffer layer In2S3 on the band alignment of CZTS/In2S3 heterostructures and the solar cell performance have been investigated. The In2S3 films are prepared by thermal evaporation method at temperatures of 30, 100, 150, and 200℃, respectively. By using x-ray photoelectron spectroscopy (XPS), the valence band offsets (VBO) are determined to be -0.28 ±0.1, -0.28±0.1, -0.34±0.1, and -0.42±0.1 eV for the CZTS/In2S3 heterostructures deposited at 30, 100, 150, and 200℃, respectively, and the corresponding conduction band offsets (CBO) are found to be 0.3±0.1, 0.41±0.1, 0.22±0.1, and 0.01±0.1 eV, respectively. The XPS study also reveals that inter-diffusion of In and Cu occurs at the interface of the heterostructures, which is especially serious at 200℃ leading to large amount of interface defects or the formation of CuInS2 phase at the interface. The CZTS solar cell with the buffer layer In2S3 deposited at 150℃ shows the best performance due to the proper CBO value at the heterostructure interface and the improved crystal quality of In2S3 film induced by the appropriate deposition temperature. The device prepared at 100℃ presents the poorest performance owing to too high a value of CBO. It is demonstrated that the deposition temperature is a crucial parameter to control the quality of the solar cells.
Keywords:  band offset      deposition temperature      CZTS/In2S3 heterostructure      solar cell  
Received:  01 January 2011      Revised:  03 February 2017      Accepted manuscript online: 
PACS:  68.55.ag (Semiconductors)  
  68.35.Fx (Diffusion; interface formation)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574038 and 61674038) and the Natural Science Foundation of Fujian Province, China (Grant No. 2014J05073).
Corresponding Authors:  Shuying Cheng     E-mail:  sycheng@fzu.edu.cn

Cite this article: 

Jinling Yu(俞金玲), Zhongming Zheng(郑重明), Limei Dong(董丽美), Shuying Cheng(程树英), Yunfeng Lai(赖云锋), Qiao Zheng(郑巧), Haifang Zhou(周海芳), Hongjie Jia(贾宏杰), Hong Zhang(张红) Effect of deposited temperatures of the buffer layer on the band offset of CZTS/In2S3 heterostructure and its solar cell performance 2017 Chin. Phys. B 26 046802

[1] Guo Q J, Hillhouse H W and Agrawal R 2014 J. Am. Chem. Soc. 131 11672
[2] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455
[3] Paier J, Asahi R, Nagoya A and Kresse G 2009 Phys. Rev. B 79 115126
[4] Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R and Mittiga A 2013 J. Phys. D: Appl. Phys. 46 175101
[5] Barkhouse D A R, Haight R, Sakai N, Hiroi H, Sugimoto H and Mitzi D B 2012 Appl. Phys. Lett. 100 193904
[6] Yan C, Liu F Y, Song N, Ng B K, Stride J A, Tadich A and Hao X J 2014 Appl. Phys. Lett. 104 173901
[7] Rajeshmon V G, Poornima N, Kartha C S and Vijayakumar K P 2013 J. Alloys Compd. 553 239
[8] Lin L Y, Yu J L, Cheng S Y, Lu P M, Lai Y F, Lin S L and Zhao P Y 2014 Appl. Phys. A-Mater. Sci. Process. 116 2173
[9] Siol S, Dhakal T P, Gudavalli G S, Rajbhandari P P, DeHart C, Baranowski L L and Zakutayev A 2016 ACS Appl. Mater. Interfaces 8 14004
[10] Long B, Shuying Cheng S Y, Qiao Zheng Q, Jinling Yu J L and Hongjie Jia H J 2016 Mater. Res. Bull. 73 140
[11] Kraut E A, Grant R W, Waldrop J W and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
[12] Anderson R L 1962 Solid State Electron. 5 341
[13] Bernede J C, Barreau N, Marsillac S and Assmann L 2002 Appl. Surf. Sci. 195 222
[14] Zhou X, Meng W, Dong C, Liu C, Qiu Z, Qi J, Chen J and Wang M 2015 RSC Adv. 5 90217
[15] Barreau N 2009 Sol. Energy 83 363
[16] Zheng Z M, Yu J L, Cheng S Y, Lai Y F, Zheng Q and Pan D M 2016 J. Mater. Sci. 27 5810
[17] Gall S, Barreau N, Harel S, Bernede J C and Kessler J 2005 Thin Solid Films 480 138
[18] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!