CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide |
Jun Li(李君)1, Shuang Xu(徐爽)1, Jin-Yong Zhang(张金咏)2, Li-Sheng Liu(刘立胜)2, Qi-Wen Liu(刘齐文)1, Wu-Chang She(佘武昌)1, Zheng-Yi Fu(傅正义)2 |
1 School of Science, Wuhan University of Technology, Wuhan 430070, China; 2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory. Strong anisotropy is observed. Under a-axis and c-axis compression, the maximum stresses are 89.0 GPa and 172.2 GPa respectively. Under a-axis compression, the destruction of icosahedra results in the unrecoverable deformation, while under c-axis compression, the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra.
|
Received: 24 November 2016
Revised: 05 January 2017
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.20.F-
|
(Deformation and plasticity)
|
|
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant No. 2015DFR50650), the National Natural Science Foundation of China (Grant Nos. 51521001, 51502220, and 11402183), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. WUT:2016-ZY-066 and WUT:2015IA014). |
Corresponding Authors:
Li-Sheng Liu
E-mail: liulish@whut.edu.cn
|
Cite this article:
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义) Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide 2017 Chin. Phys. B 26 047101
|
[1] |
Domnich V, Reynaud S, Haber R A and Chhowalla M 2011 J. Am. Ceram. Soc. 94 3605
|
[2] |
Lowther J E 2002 Physica B: Condens. Matter 322 173
|
[3] |
Letsoalo T and Lowther J E 2008 Physica B: Condens. Matter 403 2760
|
[4] |
Zhang Y, Mashimo T, Uemura Y, Uchino M, Kodama M, Shibata K, Fukuoka K, Kikuchi M, Kobayashi T and Sekine T 2006 J. Appl. Phys. 100 113536
|
[5] |
Vogler T J, Reinhart W D and Chhabildas L C 2004 J. Appl. Phys. 95 4173
|
[6] |
Chen M, McCauley J W and Hemker K J 2003 Science 299 1563
|
[7] |
Ge D, Domnich V, Juliano T, Stach E A and Gogotsi Y 2004 Acta Mater. 52 3921
|
[8] |
Chen M and McCauley J W 2006 J. Appl. Phys. 100 123517
|
[9] |
Ghosh D, Subhash G, Lee C H and Yap Y K 2007 Appl. Phys. Lett. 91 061910
|
[10] |
Domnich V, Gogotsi Y, Trenary M and Tanaka T 2002 Appl. Phys. Lett. 81 3783
|
[11] |
Li X L, Wu P, Yang R, Yan D, Chen S, Zhang S and Chen N 2016 Chin. Phys. B 25 036601
|
[12] |
Wang F, Lai W S, Li R S, He B and Li S F 2016 Chin. Phys. B 25 066804
|
[13] |
Zhou P and He D W 2016 Chin. Phys. B 25 017302
|
[14] |
An Q, Goddard W and Cheng T 2014 Phys. Rev. Lett. 113 095501
|
[15] |
An Q and Goddard W A 2015 Phys. Rev. Lett. 115 105501
|
[16] |
Aryal S, Rulis P and Ching W Y 2011 Phys. Rev. B 84 184112
|
[17] |
Yan X Q, Tang Z, Zhang L, Guo J J, Jin C Q, Zhang Y, Goto T, McCauley J W and Chen M W 2009 Phys. Rev. Lett. 102 075505
|
[18] |
Taylor D E, McCauley J W and Wright T W 2012 J. Phys.: Condens. Matter 24 505402
|
[19] |
Taylor D E 2015 J. Am. Ceram. Soc. 98 3308
|
[20] |
Betranhandy E, Vast N and Sjakste J 2012 Solid State Sci. 14 1683
|
[21] |
Clellan K J M C, Chu F, Roper J M and Shindo I 2001 J. Mater. Sci. 36 3403
|
[22] |
Korotaev P, Pokatashkin P and Yanilkin A 2016 Comput. Mater. Sci. 121 106
|
[23] |
Lazzari R, Vast N, Besson J M, Baroni S and Corso A D 1999 Phys. Rev. Lett. 83 3230
|
[24] |
Vast N, Lazzari R, Besson J M, Baroni S and Dal Corso A 2000 Comput. Mater. Sci. 17 127
|
[25] |
Saal J E, Shang S and Liu Z K 2007 Appl. Phys. Lett. 91 231915
|
[26] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[28] |
Kresse G 1999 Phys. Rev. B 59 1758
|
[29] |
Morosin B, Kwei G H, Lawson A C, Aselage T L and Emin D 1995 J. Alloys Compd. 226 121
|
[30] |
Ivashchenko V I, Shevchenko V I and Turchi P E A 2009 Phys. Rev. B 80 235208
|
[31] |
Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
|
[32] |
Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
|
[33] |
Silvi B and Savin A 1994 Nature 371 683
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|