Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040401    DOI: 10.1088/1674-1056/26/4/040401
GENERAL Prev   Next  

Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal

Wei-Huang Wu(巫伟皇)1, Yuan Tian(田苑)2, Chao Xue(薛超)3,4, Jie Luo(罗杰)1, Cheng-Gang Shao(邵成刚)3
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;
2 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China;
3 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
4 School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

In the measurement of G with the angular acceleration method, the improved correlation method developed by Wu et al. (Wu W H, Tian Y, Luo J, Shao C G, Xu J H and Wang D H 2016 Rev. Sci. Instrum. 87 094501) is used to accurately estimate the amplitudes of the prominent harmonic components of the gravitational background signal with time-varying frequency. Except the quadratic slow drift, the angular frequency of the gravitational background signal also includes a cosine oscillation coming from the useful angular acceleration signal, which leads to a deviation from the estimated amplitude. We calculate the correction of the cosine oscillation to the amplitude estimation. The result shows that the corrections of the cosine oscillation to the amplitudes of the fundamental frequency and second harmonic components obtained by the improved correlation method are within respective errors.

Keywords:  gravitational background signal      improved correlation method      correction      cosine oscillation  
Received:  22 November 2016      Revised:  17 January 2017      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575160, 11175160, 11275075, and 11511130011).

Corresponding Authors:  Jie Luo, Cheng-Gang Shao     E-mail:  luojiethanks@126.com;cgshao@mail.hust.edu.cn

Cite this article: 

Wei-Huang Wu(巫伟皇), Yuan Tian(田苑), Chao Xue(薛超), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚) Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal 2017 Chin. Phys. B 26 040401

[1] Rose R D, Parker H M, Lowry R A, Kuhlthau A R and Beams J W 1969 Phys. Rev. Lett. 23 655
[2] Gundlach J H, Adelberger E G, Heckel B R and Swanson H E 1996 Phys. Rev. D 54 1256
[3] Gundlach J H 1999 Meas. Sci. Technol. 10 454
[4] Gundlach J H and Merkowitz S M 2000 Phys. Rev. Lett. 85 2869
[5] Xue C, Quan L D, Yang S Q, Wang B P, Wu J F, Shao C G, Tu L C, Milyukov V and Luo J 2014 Philos. Trans. R. Soc. A 372 20140031
[6] Wang D H, Luo J and Luo K 2006 Rev. Sci. Instrum. 77 104501
[7] Bendat J S and Piersol A G 1971 Random Data: Analysis and Measurement Procedure (New York: Wiley)
[8] Billure B 2000 Meas. Sci. Technol. 11 45
[9] Tian Y L, Tu Y and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[10] Luo J, Tian Y, Wang D H and Shao C G 2014 Meas. Sci. Technol. 25 055006
[11] Luo J and Hu Z K 2000 Clas. Quantum Grav. 17 2351
[12] Quan L D, Xue C, Shao C G, Yang S Q, Tu L C, Wang Y J and Luo J 2014 Rev. Sci. Instrum. 85 014501
[13] Su Y 1992 "A new test of the weak equivalence principle", Ph. D. thesis, University of Washington Washington
[14] Su Y, Heckel B R, Adelberger E G, Gundlach J H, Harris M, Smith G L and Swanson H E 1994 Phys. Rev. D 50 3614
[15] Yang S Q, Tu L C, Shao C G, Li Q, Wang Q L, Zhou Z B and Luo J 2009 Phys. Rev. D 80 122005
[16] Tu L C, Li Q, Wang Q L, Shao C G, Yang S Q, Liu L X, Liu Q and Luo J 2010 Phys. Rev. D 82 022001
[17] Luo J, Wu W H, Xue C, Shao C G, Zhan W Z, Wu J F and Milyukov V 2016 Rev. Sci. Instrum. 87 084501
[18] Wu W H, Tian Y, Luo J, Shao C G, Xu J H and Wang D H 2016 Rev. Sci. Instrum. 87 094501
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[3] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[4] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[5] Defect calculations with quasiparticle correction: A revisited study of iodine defects in CH3NH3PbI3
Ling Li(李玲) and Wan-Jian Yin(尹万健). Chin. Phys. B, 2022, 31(1): 017103.
[6] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[7] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[8] Ring artifacts correction based on the projection-field in neutron CT
Sheng-Xiang Wang(王声翔), Jie Chen(陈洁), Zhi-Jian Tan(谭志坚), Si-Hao Deng(邓司浩), Yao-Da Wu(吴耀达), Huai-Le Lu(卢怀乐), Shou-Ding Li(李守定), Wei-Chang Chen(陈卫昌), and Lun-Hua He(何伦华). Chin. Phys. B, 2021, 30(5): 050601.
[9] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
[10] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[11] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[12] Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier
Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2019, 28(1): 014203.
[13] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[14] Correction of failure in antenna array using matrix pencil technique
S U Khan, M K A Rahim. Chin. Phys. B, 2017, 26(6): 068401.
[15] High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors
Jun-Tao Ma(马俊涛), Mei-Guo Gao(高梅国), Bao-Feng Guo(郭宝锋), Jian Dong(董健), Di Xiong(熊娣), Qi Feng(冯祺). Chin. Phys. B, 2017, 26(10): 108401.
No Suggested Reading articles found!