PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Dense pair plasma generation by two laser pulses colliding in a cylinder channel |
Jian-Xun Liu(刘建勋)1,2, Yan-Yun Ma(马燕云)1,3,4, Tong-Pu Yu(余同普)1,3, Jun Zhao(赵军)1, Xiao-Hu Yang(杨晓虎)1, De-Bin Zou(邹德滨)1, Guo-Bo Zhang(张国博)1, Yuan Zhao(赵媛)1, Jing-Kang Yang(杨靖康)1, Han-Zhen Li(李汉臻)1, Hong-Bin Zhuo(卓红斌)1, Fu-Qiu Shao(邵福球)1, Shigeo Kawata5 |
1 College of Science, National University of Defense Technology, Changsha 410073, China; 2 College of Electronic Engineering, Wuhan 430019, China; 3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621000, China; 5 Center for Optical Research and Education, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585, Japan |
|
|
Abstract An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder, electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit-Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60×1027 m-3, for lasers with an intensity of 4×1022 W·cm-2. Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics.
|
Received: 28 August 2016
Revised: 14 November 2016
Accepted manuscript online:
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
Fund: Project supported by the National Natural Science Foundation (Grant Nos. 11475260, 11305264, 11622547, 11375265, and 11474360), the National Basic Research Program of China (Grant No. 2013CBA01504), the Research Project of National University of Defense Technology, China (Contract No. JC14-02-02), and the Science Challenge Program, China (Grant No. JCKY2016212A505). |
Corresponding Authors:
Yan-Yun Ma, Tong-Pu Yu
E-mail: yanyunma@126.com;tongpu@nudt.edu.cn
|
Cite this article:
Jian-Xun Liu(刘建勋), Yan-Yun Ma(马燕云), Tong-Pu Yu(余同普), Jun Zhao(赵军), Xiao-Hu Yang(杨晓虎), De-Bin Zou(邹德滨), Guo-Bo Zhang(张国博), Yuan Zhao(赵媛), Jing-Kang Yang(杨靖康), Han-Zhen Li(李汉臻), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), Shigeo Kawata Dense pair plasma generation by two laser pulses colliding in a cylinder channel 2017 Chin. Phys. B 26 035202
|
[1] |
Ali Shan S, El-Tantawy S A and Moslem W M 2013 Phys. Plasmas 20 082104
|
[2] |
Ruffini R, Vereshchagin G and Xue S 2010 Phys. Rep. 487 1
|
[3] |
Khan S A and Wazir Z 2013 Chin. Phys. B 22 025201
|
[4] |
Foster J M, Wilde B H, Rosen P A, Williams R J R, Blue B E, Coker R F, Drake R P, Frank A, Keiter P A and Khokhlov A M 2005 Astrophys. J. Lett. 634 L77
|
[5] |
Sarri G, Poder K, Cole J, Schumaker W, Piazza A D, Reville B, Doria D, Gizzi L A, Grittani and Kar S 2015 Nat. Commun. 6 6747
|
[6] |
Greaves R G, Tinkle M D and Surko C M 1994 Phys. Plasmas 1 1439
|
[7] |
Chang H X, Qiao B, Xu Z, Xu X R, Zhou C T, Yan X Q, Wu S Z, Borghesi M, Zepf M and He X T 2015 Phys. Rev. E 92 053107
|
[8] |
Jirka M, Klimo O, Bulanov S V, Esirkepov T Z, Gelfer E, Bulanov S S, Weber S and Korn G 2016 Phys. Rev. E 93 023207
|
[9] |
Nakamura T and Hayakawa T 2015 Phys. Plasmas 22 083113
|
[10] |
Shen B and Meyertervehn J 2002 Phys. Rev. E 65 016405
|
[11] |
Jiang M, Xie B S, Sang H B and Li Z L 2013 Chin. Phys. B 22 100307
|
[12] |
Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E and Pukhov A 2016 Nat. Commun. 7 13686
|
[13] |
Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W and Bula C 1997 Phys. Rev. Lett. 79 1626
|
[14] |
Yan Y H, Wu Y, Dong K, Zhang B, Zhao Z, Yao Z and Gu Y 2014 Eur. Phys. J. D 68 4
|
[15] |
Gahn C, Tsakiris G, Pretzler G, Witte K, Thirolf P, Habs D, Delfin C and Wahlström C G 2002 Phys. Plasmas 9 987
|
[16] |
Williams G J, Pollock B B, Albert F, Park J and Chen H 2015 Phys. Plasmas 22 093115
|
[17] |
Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V and He Z 2013 Phys. Rev. Lett. 110 255002
|
[18] |
Yan Y H, Zhang B, Wu Y, Dong K, Yao Z and Gu Y 2013 Phys. Plasmas 20 103114
|
[19] |
Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas 22 103102
|
[20] |
Ridgers C P, Brady C S, Duclous R, Kirk J, Bennett K, Arber T, Robinson A and Bell A 2012 Phys. Rev. Lett. 108 165006
|
[21] |
Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I C E and Chen M 2015 Phys. Plasmas 22 063112
|
[22] |
Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q and Liu J J 2015 New J. Phys. 17 053039
|
[23] |
Ridgers C P, Brady C S, Duclous R, Kirk J, Bennett K, Arber T and Bell A 2013 Phys. Plasmas 20 056701
|
[24] |
Chen H, Wilks S C, Bonlie J D, Liang E P, Myatt J, Price D F, Meyerhofer D D and Beiersdorfer P 2009 Phys. Rev. Lett. 102 105001
|
[25] |
Brady C, Ridgers C, Arber T and Bell A 2013 Plasma Phys. Control. Fusion 55 124016
|
[26] |
Yu T P, Yu W, Shao F Q, Luan S X, Zou D B, Ge Z Y, Zhang G B, Wang J W, Wang W Q, Li X H, Liu J X, Ouyang J M and Wong A Y 2015 J. Appl. Phys. 117 023105
|
[27] |
Arber T D, Bennett K, Brady C S, Lawrence-Douglas A and Ramsay M G 2015 Plasma Phys. Control. Fusion 57 113001
|
[28] |
Ji L L, Pukhov A, I Yu K, Shen B F and Akli K 2014 Phys. Rev. Lett. 112 145003
|
[29] |
Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
|
[30] |
Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403
|
[31] |
Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J and Zhang J 2006 Phys. Plasmas 13 110702
|
[32] |
Zou D B, Hu L X, Wang W Q, Yang X H, Yu T P, Zhang G B, Ouyang J M, Shao F Q and Zhuo H B 2015 High Energy Density Phys. 18 1
|
[33] |
Yi L Q, Pukhov A, Luu-Thanh P and Shen B F 2016 Phys. Rev. Lett. 116 115001
|
[34] |
Hu L X, Yu T P, Shao F Q, Zou D B and Yin Y 2015 Phys. Plasmas 22 033104
|
[35] |
Zou D B, Zhuo H B, Yu T P, Wu H C, Yang X H, Shao F Q, Ma Y Y, Yin Y and Ge Z Y 2015 Phys. Plasmas 22 023109
|
[36] |
Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W and Pukhov A 2014 Appl. Phys. Lett. 105 114101
|
[37] |
Liu J J, Yu T P, Yin Y, Zhu X L and Shao F Q 2016 Opt. Express 24 015978
|
[38] |
Ni L, Kliem B, Lin J and Wu N 2015 Astrophys. J. 799 79
|
[39] |
Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Gan L F, Zhang G B, Zhao Y, Zhang S J, Liu J J, Zhuo H B, Shao F Q and Kawata S 2016 Plasma Phys. Control. Fusion 58 125007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|