Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 035203    DOI: 10.1088/1674-1056/26/3/035203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol

Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力)
School of Science, China University of Geosciences, Beijing 100083, China
Abstract  A solid-like propellant of carbon-doped glycerol ablated by a nanosecond pulsed laser is investigated. The results show that the specific impulse increases with increasing carbon content, and a maximum value of 228 s is obtained. The high specific impulse is attributed to the low ablated mass loss that occurs at high carbon content. More importantly, with increasing carbon content, the properties of the doped glycerol approach to those of a solid. These results indicate that propulsion at the required coupling coefficient and specific impulse can be realized by doping a liquid propellant with an absorber.
Keywords:  laser plasma      propulsion      liquid      specific impulse  
Received:  20 September 2016      Revised:  27 November 2016      Accepted manuscript online: 
PACS:  52.75.Di (Ion and plasma propulsion)  
  79.20.Ds (Laser-beam impact phenomena)  
  62.10.+s (Mechanical properties of liquids)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 53200859165 and 2562010050).
Corresponding Authors:  Zhi-Yuan Zheng     E-mail:  zhyzheng@cugb.edu.cn

Cite this article: 

Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力) Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol 2017 Chin. Phys. B 26 035203

[1] Luke J R, Phipps C R and McDuff G G 2003 Appl. Phys. A 77 343
[2] Zheng Z Y, Liang T, Zhang S Q, Gao L, Gao H and Zhang Z L 2016 Appl. Phys. A 122 317
[3] Phipps C R, Luke J K, Lippert T, Hauer M and Wokaun A 2004 Appl. Phys. A 79 1385
[4] Fardel R, Urech L, Lippert T, Phipps C, Fitz-gerald J M and Wokaun A 2009 Appl. Phys. A 94 657
[5] Zheng Z Y, Gao H, Gao L, Xing J, Fan Z J, Dong A G and Zhang Z L 2014 Appl. Phys. A 115 1439
[6] Ahmad M R, Jamil Y, Zakaria M Q, Hassain T and Ahmad R 2015 Laser Phys. Lett. 12 056101
[7] Zhang Y, Lu X, Zheng Z Y, Liu F, Zhu P F, Li H M, Li Y T, Li Y J and Zhang J 2008 Appl. Phys. A 91 357
[8] Choi S, Han T, Gojani A B and Yoh J J 2010 Appl. Phys. A 98 147
[9] Ye J F, Hong Y J and Li N L 2015 Infrared and Laser Engineering 44 102
[10] Zheng Z Y, Fan Z J, Wang S W, Dong A G, Xing J and Zhang Z L 2012 Chin. Phys. Lett. 29 095205
[11] Zheng Z Y, Zhang Si Qi, Liang T, Gao L, Gao H and Zhang Z L 2016 Chin. Phys. B 25 045204
[12] Xue Y T, Dou Z G, Ye J F, Li N L, Zhang G Z and Wan Y 2014 High Power Laser Part. Beams 26 101020
[13] Li N L, Ye J F and Zhou W J 2015 Journal of Propulsion Technology 36 1595
[14] Zheng Z Y, Zhang Y, Zhou W G, Lu X, Li Y T and Zhang J 2008 Chin. Phys. Lett. 24 501
[15] Phipps C R, Luke J R, Lippert T and Mcduff G G 2003 Appl. Phys. A 77 193
[16] Urech L, Lippert T, Phipps C R and Wokaum A 2007 Appl. Surf. Sci. 253 6409
[17] Zheng Z Y, Zhang J, Lu X, Hao Z Q, Yuan X H, Wang Z H and Wei Z Y 2006 Appl. Phys. A 83 329
[18] Bhatti K A, Khaleeq-ur-Rahman M, Jamil H, Latif A and Rafique M S 2010 Vacuum 84 1080
[19] Pakhomov A V, Gergory D A, Swift W and Thompson M S 2002 AIAA Journal 40 2305
[1] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[2] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[3] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[7] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[8] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[9] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[10] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[11] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[14] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[15] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
No Suggested Reading articles found!