Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028103    DOI: 10.1088/1674-1056/26/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Geometrically induced π-band splitting in graphene superlattices

Yanpei Wei(魏艳佩), Tiantian Jia(贾甜甜), Gang Chen(陈刚)
Department of Physics, University of Jinan, Jinan 250022, China
Abstract  According to band folding analyses, the graphene superlattices can be differed by whether the Dirac points are folded to Γ point or not. In previous studies, the inversion symmetry preserved defects open bandgap in the former superlattices while they cannot in the latter ones. In this paper, by using density functional theory with generalized gradient approximation, we have carefully studied the electronic properties of the latter graphene superlattices, in which the defects would induce π-band splitting to get the πa1-πa2 and πz1-πz2 band sets. Based on our detailed studies, such splitting could be attributed to the geometrically induced bond-symmetry breaking. In addition, these band sets could be shifted toward each other by the methodology of strain engineering. A bandgap would be opened once the band sets start to overlap. Then, its gap width could be continuously enlarged by enhancing strain until reaching the maximum value determined by the defect density. These studies contribute to the bandstructure engineering of graphene-based nanomaterials, which would be interesting to call for further investigations on both theory and experiment.
Keywords:  first-principles calculation      novel two-dimensional nanostructure      bandgap opening and tuning  
Received:  25 August 2016      Revised:  20 November 2016      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.Rm (Porous materials; granular materials)  
  81.05.ue (Graphene)  
Fund: Project jointly supported by the Natural Science Foundation of Shandong Province (Grant NO. TSHW20101004) and the National Natural Science Foundation of China (Grant Nos. 11374128 and 11674129).
Corresponding Authors:  Gang Chen     E-mail:  phdgchen@163.com

Cite this article: 

Yanpei Wei(魏艳佩), Tiantian Jia(贾甜甜), Gang Chen(陈刚) Geometrically induced π-band splitting in graphene superlattices 2017 Chin. Phys. B 26 028103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[3] Xiu S L, Gong L, Wang V, Liang Y Y, Chen G and Kawazoe Y 2014 J. Phys. Chem. C 118 8174
[4] Xiu S L, Zhemg M M, Zhao P, Zhang Y, Liu H Y, Li S J, Chen G and Kawazoe Y 2014 Carbon 79 646
[5] Agrawal B K and Agrawal S 2013 Physica E 50 102
[6] Sun M, Tang W, Ren Q, Zhao Y, Wang S, Yu J, Du Y and Hao Y 2016 Physica E 80 142
[7] Denis P A, Huelmo C P and Martins A S 2016 J. Phys. Chem. C 120 7103
[8] Nascimento R, Martins J da R, Batista R J C and Chacham H 2015 J. Phys. Chem. C 119 5055
[9] Xu L, Wang L, Huang W, Li X and Xiao W 2014 Physica E 63 259
[10] Chen Z, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
[11] Jia T T, Zheng M M, Fan X Y, Su Y, Li S J, Liu H Y, Chen G and Kawazoe Y 2016 Sci. Rep. 6 18869
[12] Bai J W, Zhong X, Jiang S, Huang Y and Duan X F 2010 Nat. Nanotechnol. 5 190
[13] Kim M, Safrom N S, Han E, Arnold M S and Gopalan P 2010 Nano Lett. 10 1125
[14] Liang X, Jung Y S, Wu S, Ismach A, Olynick D L, Cabrini S and Bokor J 2010 Nano Lett. 10 2454
[15] Liu L Z, Tian S B, Long Y Z, Li W X, Yang H F, Li J J and Gu C Z 2014 Vacuum 105 21
[16] Yang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[17] Guo Y H, Cao J X and Xu B 2016 Chin. Phys. B 25 017101
[18] Wang H B, Su Y and Chen G 2014 Chin. Phys. B 23 018103
[19] Hu Q K, Wang H Y, Wu Q H, He J L and Zhang G L 2011 Chin. Phys. Lett. 28 126101
[20] Wang J, Duan X M and Zhang P 2016 Chin. Phys. B 25 057301
[21] Singleton J 2001 Band Theory and Electronic Properties of Solids (Oxford: Oxford University Press)
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] Porezg D, Frauenheim Th, Kühler Th, Seifert G and Kaschner R 1995 Phys. Rev. B 51 12947
[27] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407
[28] Miyake T and Saito S 2005 Phys. Rev. B 72 073404
[29] Li J, Fan X, Wei Y, Wang V and Chen G 2016 Chem. Phys. Lett. 660 244
[30] Li J, Wei Y, Fan X, Wang H, Song Y, Chen G, Liang Y, Wang V and Kawazoe Y 2016 J. Mater. Chem. C 4 9613
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!