Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027302    DOI: 10.1088/1674-1056/26/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks

Xiu-Ying Liu(刘秀英)1, Jing-Xin Yu(于景新)1, Xiao-Dong Li(李晓东)1, Gui-Cheng Liu(刘桂成)2, Xiao-Feng Li(李晓凤)3, Joong-Kee Lee2
1 College of Science, Henan University of Technology, Zhengzhou 450000, China;
2 Center for Energy Convergence Research, Green City Research Institute, Korea Institute of Science and Technology(KIST), Seoul 02792, Republic of Korea;
3 College of Physical and Electronic Information, Luoyang Normal University, Luoyang 471022, China
Abstract  Hydrogen spillover mechanism of metal-supported covalent-organic frameworks COF-105 is investigated by means of the density functional theory, and the effects of metal catalysts M4 (Pt4, Pd4, and Ni4) on the whole spillover process are systematically analyzed. These three metal catalysts exhibit several similar phenomena: (i) they prefer to deposit on the tetra (4-dihydroxyborylphenyl) silane (TBPS) cluster with surface-contacted configuration; (ii) only the H atoms at the bridge site can migrate to 2,3,6,7,10,11-hexahydroxy triphenylene (HHTP) and TBPS surfaces, and the migration process is an endothermic reaction and not stable; (iii) the introduction of M4 catalyst can greatly reduce the diffusion energy barrier of H atoms, which makes it easier for the H atoms to diffuse on the substrate surface. Differently, all of the H2 molecules spontaneously dissociate into H atoms onto Pt4 and Pd4 clusters. However, the adsorbed H2 molecules on Ni4 cluster show two types of adsorption states: one activated state with stretched H-H bond length of 0.88 Å via the Kubas interaction and five dissociated states with separated hydrogen atoms. Among all the M4 catalysts, the orders of the binding energy of M4 deposited on the substrate and average chemisorption energy per H2 molecule are Pt4 > Ni4 > Pd4. On the contrary, the orders of the migration and diffusion barriers of H atoms are Pt4 < Ni4 < Pd4, which indicates that Pt4 is the most promising catalyst for the hydrogen spillover with the lowest migration and diffusion energy barriers. However, the migration of H atoms from Pt4 toward the substrate is still endothermic. Thus direct migration of H atom from metal catalyst toward the substrate is thermodynamically unfavorable.
Keywords:  covalent-organic frameworks      hydrogen spillover      hydrogen storage      density functional theory  
Received:  07 October 2016      Revised:  06 November 2016      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  36.40.-c (Atomic and molecular clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11304140, 11404094, and 11504088), the China National Scholarship Foundation (Grant No. 201508410255), the Foundation for Young Core Teachers of Higher Education Institutions of Henan Province of China, the Foundation for Young Core Teachers of Henan University of Technology in China, the Korea Institute of Science and Technology (KIST) Institutional Program (Grant No. 2E26291) and Flag Program (Grant No. 2E26300), and the Research Grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. NRF-2015H1D3A1036078).
Corresponding Authors:  Gui-Cheng Liu     E-mail:  log67@163.com

Cite this article: 

Xiu-Ying Liu(刘秀英), Jing-Xin Yu(于景新), Xiao-Dong Li(李晓东), Gui-Cheng Liu(刘桂成), Xiao-Feng Li(李晓凤), Joong-Kee Lee Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks 2017 Chin. Phys. B 26 027302

[1] Zhang F, Zhao P, Meng N and Maddy J 2016 Int. J. Hydrogen Energy 41 14535
[2] Hu Y H 2013 Int. J. Energy Res. 37 683
[3] Ruan W, Wu D L, Luo W L, Yu X G and Xie A D 2014 Chin. Phys. B 23 023102
[4] Schlapbach L and Züttel A 2001 Nature 414 353
[5] Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
[6] Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J and Yaghi O M 2005 Science 310 1166
[7] Spitler E L and Dichtel W R 2010 Nat. Chem. 2 672
[8] Liu X Y, He J, Yu J X, Li Z X and Fan Z Q 2014 Chin. Phys. B 23 067303
[9] Guo J H, Zhang H, Tang Y J and Cheng X L 2013 Phys. Chem. Chem. Phys. 15 2873
[10] Klontzas E, Tylianakis E and Froudakis G E 2008 J. Phys. Chem. C 112 9095
[11] Wong-Foy A G, Matzger A J and Yaghi O M 2006 J. Am. Chem. Soc. 128 3494
[12] Lachawiec A J Jr, Qi G and Yang R T 2005 Langmuir 21 11418
[13] Tsao C S, Liu Y, Chuang H Y, Tseng H H, Chen T Y, Chen C H, Yu M S, Li Q, Lueking A and Chen S H 2011 J. Phys. Chem. Lett. 2 2322
[14] Lachawiec A J Jr and Yang R T 2008 Langmuir 24 6159
[15] Pham V H, Dang T T, Singh K, Hur S H, Shin E W, Kim J S, Lee M A, Baeck S H and Chung J S 2013 J. Mater. Chem. A 1 1070
[16] Li Y W and Yang R T 2006 J. Am. Chem. Soc. 128 726
[17] Li Y W and Yang R T 2008 AIChE J. 54 269
[18] Kalidindi S B, Oh H, Hirscher M, Esken D, Wiktor C, Turner S, Van Tendeloo G and Fischer R A 2012 Chem. Eur. J. 18 10848
[19] Prins R 2012 Chem. Soc. 112 2714
[20] Suri M, Dornfeld M and Ganz E 2009 J. Chem. Phys. 131 174703
[21] Ganz E and Dornfeld M 2012 J. Phys. Chem. C 116 3661
[22] Ganz E and Dornfeld M 2014 J. Phys. Chem. C 118 5657
[23] Chen L, Cooper A C, Pez G P and Cheng H 2007 J. Phys. Chem. C 111 5514
[24] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[29] Sigal A, Rojas M I and Leiva E P M 2011 Phys. Rev. Lett. 107 158701
[30] Zhou C, Wu J, Nie A, Forrey R C, Tachibana A and Cheng H 2007 J. Phys. Chem. C 111 12773
[31] Cabria I, López M J, Fraile S and Alonso J A 2012 J. Phys. Chem. C 116 21179
[32] Wu H Y, Fan X F, Kuo J L and Deng W Q 2011 J. Phys. Chem. C 115 9241
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!