CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, optical, and magnetic properties of Co-doped Cu2O |
I Djabri, T Rezkallah, F Chemam |
Laboratoire de la Physique Appliquée et Théorique, Département des Sciences de la matiére, Université Laarbi tebessi, tebessa, Algérie |
|
|
Abstract We investigate the magnetic properties of Co-doped Cu2O. We studied first the electronic and structural properties of Cu2O using the optimization of the lattice constant which is 4.18 Å. The calculated gap is found between 0.825 eV and 1.5 eV, these values are in good agreement with the experimental results. The Co atoms are inserted in Cu2O by means of the density functional theory (DFT) using LSDA, LSDA+U, and LSDA+MBJ approximations in the WIEN2k code, based on the supercell model by setting up 12, 24, and 48 atoms in (1×1×2), (1×2×2), and (2×2×2) supercells respectively with one or two copper atoms being replaced by cobalt atoms. The energy difference between the ferromagnetic and anti-ferromagnetic coupling of the spins located on the substitute Co has been calculated in order to obtain better insight into the magnetic exchange coupling for this particular compound. The studied compound exhibits stable integer magnetic moments of 2 μB and 4 μB when it is doped with 2 atoms of Co. Optical properties have also been worked out. The results obtained in this study demonstrate the importance of the magnetic effect in Cu2O.
|
Received: 19 August 2016
Revised: 30 October 2016
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
Corresponding Authors:
F Chemam
E-mail: fchemam@gmail.com
|
Cite this article:
I Djabri, T Rezkallah, F Chemam Structural, electronic, optical, and magnetic properties of Co-doped Cu2O 2017 Chin. Phys. B 26 027102
|
[1] |
Guangwei Y, Xiaobo H, Duo L, Daliang S, Jing L, Huaijin Z Hong L and Jiyang W 2010 J. Electroanal. Chem. 638 225
|
[2] |
Asar A, Namdeo S and Gajbhiye J 2010 Solid State Chem. 183 3100
|
[3] |
Ogwu A A, Bouquerel E, Ademosu O, Moh S, Crossan E and Placido F 2005 Physica D 38 266
|
[4] |
Mittiga A, Salza E, Sarto F, Tucci M and Vasanthi R 2006 Appl. Phys. Lett. 88 163502
|
[5] |
Wei H M, Gong H B, Chen L, Zi M and Cao B Q 2012 Phys. Chem. C 116 10510
|
[6] |
Malerba C, Azanza Ricardo C L, D'Incau M, Biccari F, Scardi P and Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192
|
[7] |
Hu C C, Nian J N and Teng H 2008 Sol. Energy Mater. Sol. Cells 92 1071
|
[8] |
De Jongh P E, Vanmaekelbergh D and Kelly J 1999 Chem. Commun. 10 69
|
[9] |
Hara M, Kondo T, Komoda M, Ikeda S, Kondo J, Domen K, Shinohara K and Tanaka A 1998 Chem. Commun. 357
|
[10] |
Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, Wang P and Dai Y 2009 Phys. Chem. C 113 14448
|
[11] |
Huang W C, Lyu L M, YangY C and Huang M H 2012 Am. Chem. Soc. 134 1261
|
[12] |
Han X F, Han K H and Tao M 2009 Electrochem. Solid State Lett. 12 H89
|
[13] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[14] |
Herng T S, Lau S P, Yu S F, Yang H Y, Ji X H, Chen J S, Yasui N and Inaba H 2006 Appl. Phys. 99 086101
|
[15] |
Sato K and Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17 367
|
[16] |
Delatorre R G, Munford M L, Zandonay R, ZoldanV C, Pasa A A, Schwarzacher W, Meruvia M S and Hümmelgen I A 2006 Appl. Phys. Lett. 88 3504
|
[17] |
Brandt I S, Lima E, Tumelero M A, Acuna J J S, Viegas A D C, Zysler R D and Pasa A A 2011 IEEE Trans. Mag. 47 2640
|
[18] |
Zhao Z Y, Yi J and Zhou D C 2014 Chin. Phys. B 23 017401
|
[19] |
Chieh-Cheng Ch and Hsuan-Chung W 2016 Materials 9 164
|
[20] |
Sieberer M, Redinger J and Mohn P 2007 Phys. Rev. B 75 035203
|
[21] |
Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 072514
|
[22] |
Lui Y L, Harrington S, Yates K A, Wei M, Blamire M G, MacManus-Driscoll J L and Liu Y C 2005 Appl. Phys. Lett. 87 222108
|
[23] |
Antony J, Qiang Y, Faheem M and Meyer D 2007 Appl. Phys. Lett. 90 013106
|
[24] |
Kale S N, Ogale S B, Shinde S R, Sahasrabuddhe M, Kulkarni V N, Greene R L and Venkatesan T 2003 Appl. Phys. Lett. 82 2100
|
[25] |
Pan L Q, Zhu H, Fan C F, Wang W G, Zhang Y and Xiao J Q 2005 Appl. Phys. 97 10D318
|
[26] |
Kirfel A and Eichhorn K D 1990 Acta Crystal. A 46 271
|
[27] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, "an Augmented-Plane-Wave +Local Orbitals Program for Calculating Crystal Properties", ed. Schwarz K (Wien: Technische Wien)
|
[28] |
Katayama J, Ito K, Matsuoka M and Tamaki J 2004 Appl. Electrochem. 34 687
|
[29] |
Meyer B K, Polity A, Reppin D, Becke M, Hering P, Kramm B, Klar P J, Sander T, Reindl C, Heiliger C, Heinemann M, Müller C and Ronning C 2013 Semiconductors and Semimetals Vol. 88 (Elsevier Inc.) p. 201
|
[30] |
Ghisjen J, Tjeng L H, Elp J, Eskes H, Westerink J, Sawatsky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
|
[31] |
Ghijsen J, Tjeng L H, Eskes H, Sawatsky G A and Johnson R L 1990 Phys. Rev. B 42 2268
|
[32] |
Jiang Z Q, Yao G, An X Y, Fu Y J, Cao L H, Wu W D and Wang X M 2014 Chin. Phys. B 23 057104
|
[33] |
Xinguo M, Ying W, Yanhui L and Yongfa Zh 2013 Phys. Chem. C 117 26029
|
[34] |
Li L, Cheng Y, Wang W, Ren Sh, Yang Y, Luo X and Liu H 2011 Solid State Commun. 151 1583
|
[35] |
Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L and Yang X D 2010 Chin. Phys. B 19 077102
|
[36] |
Okoye C M I 2003 J. Phys.: Condens. Matter 15 5945
|
[37] |
Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q and Feng X 2008 Eur. Phys. B 62 417
|
[38] |
Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
|
[39] |
Cai M Q, Yin Z and Zhang M S 2003 Appl. Phys. Lett. 83 2805
|
[40] |
Anderson O L 1963 Phys. Chem. Sol. 24 909
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|