Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127102    DOI: 10.1088/1674-1056/26/12/127102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors

Peng Cui(崔鹏)1, Zhao-Jun Lin(林兆军)1, Chen Fu(付晨)1, Yan Liu(刘艳)1, Yuan-Jie Lv(吕元杰)2
1. School of Microelectronics, Shandong University, Jinan 250100, China;
2. National Key Laboratory of Application Specific Integrated Circuit(ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  AlGaN/GaN heterostructure field-effect transistors (HFETs) with different floating gate lengths and floating gates annealed at different temperatures, are fabricated. Using the measured capacitance-voltage curves of the gate Shottky contacts for the AlGaN/GaN HFETs, we find that after floating gate experiences 600℃ rapid thermal annealing, the larger the floating gate length, the larger the two-dimensional electron gas electron density under the gate region is. Based on the measured capacitance-voltage and current-voltage curves, the strain of the AlGaN barrier layer in the gate region is calculated, which proves that the increased electron density originates from the increased strain of the AlGaN barrier layer.
Keywords:  AlGaN/GaN HFETs      floating gate      rapid thermal annealing      strain  
Received:  07 June 2017      Revised:  11 August 2017      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174182, 11574182, and 61674130).
Corresponding Authors:  Zhao-Jun Lin     E-mail:  linzj@sdu.edu.cn

Cite this article: 

Peng Cui(崔鹏), Zhao-Jun Lin(林兆军), Chen Fu(付晨), Yan Liu(刘艳), Yuan-Jie Lv(吕元杰) Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors 2017 Chin. Phys. B 26 127102

[1] Romanczyk B, Guidry M, Wienecke S, Li H, Ahmadi E, Zheng X, Keller S and Mishra U K 2016 IEEE Electron. Lett. 52 1813
[2] Lv Y, Song X, Guo H, Fang Y and Feng Z 2016 IEEE Electron. Lett. 52 1340
[3] Waller W, Gajda M, Pandey S, Donkers J, Calton D, Croon J, Karboyan S, Šonský J, Uren M and Kuball M 2017 IEEE Trans. Electron Dev. 64 1197
[4] Hanawa H, Onodera H, Nakajima A and Horio K 2014 IEEE Trans. Electron Dev. 61 769
[5] Arulkumaran S, Ng G and Vicknesh S 2013 IEEE Electron Dev. Lett. 34 1364
[6] Egawa T, Zhao G, Ishikawa H, Umeno M and Jimbo T 2001 IEEE Electron Dev. Lett. 48 603
[7] Zhang Y, Teo K and Palacios T 2016 IEEE Trans. Electron Dev. 63 2340
[8] Lim J, Choi Y, Kim Y and Han M 2010 Phys. Scr. T141 014009
[9] Ahn H, Kim Z, Bae S, Kim H, Kang D, Kim S, Lee J, Min B, Yoon H, Lim J, Kwona Y, Nama E, Park H, Kim H and Lee J 2014 Solid-State Electron. 95 42
[10] Zhao J Z, Lin Z J, Chen Q Y, Yang M, Cui P, Lv Y J and Feng Z H 2015 Appl. Phys. A-MATER 121 1271
[11] Feng Q, Li L M, Hao Y, Ni J Y and Zhang J C 2009 Solid State Electron. 53 955
[12] Zhang M, Xiao H D and Lin Z J 2006 Chin.Phys.Lett. 23 1900
[13] Zhao J Z, Lin Z J, Timothy D C, Zhan Y, Lv Y J, Lu W, Wang Z G and Chen H 2009 Chin. Phys. B 18 3980
[14] Lv Y J, Lin Z J, Zhang Y, Meng L G, Cao Z F, Luan C B, Chen H and Wang Z G 2011 Chin. Phys. B 20 097106
[15] Lv Y J, Lin Z J, Zhang Y, Meng L G, Cao Z F, Luan C B, Chen H and Wang Z G 2011 Chin. Phys. B 20 047105
[16] Lv Y J, Feng Z H, Gu G D, Dun S B, Yin J Y, Wang Y G, Xu P, Han T T, Song X B, Cai S J, Luan C B and Lin Z J 2014 Chin. Phys. B 23 027102
[17] Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z and Wang Z 2007 Appl. Phys. Lett. 91 173507
[18] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
[19] Ibbetson J, Fini P, Ness K, DenBaars S, Speck J and Mishrab U 2000 Appl. Phys. Lett. 77 25
[20] Zhao J T, Lin Z J, Luan C B, Chen Q Y, Yang M, Zhou Y, Lv Y J and Feng Z H 2015 Superlattice Microst. 79 21
[21] Lv Y J, Lin Z J, Meng L G, Yu Y Y, Luan C B, Cao Z F, Chen H, Sun B Q and Wang Z G 2011 Appl. Phys. Lett. 99 123504
[22] Chen C H, Baier S M, Arch D K and Shur M S 1988 IEEE Trans. Electron Dev. 35 570
[23] Luan C B, Lin Z J, Lv Y J, Meng L G, Yu Y X, Cao Z F, Chen H and Wang Z G 2012 Appl. Phys. Lett. 101 113501
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!