CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory |
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国) |
Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract Based on the density functional calculations, the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated. The calculated results show that unlike the free mono-layer WS2, the monolayer WS2 in the equilibrium WS2/graphene heterojunctionis characterized by indirect band gap due to the weak van der Waals interaction. The height of the schottky barrier for the WS2/graphene heterojunction is 0.13 eV, which is lower than the conventional metal/MoS2 contact. Moreover, the band properties and height of schottky barrier for WS2/graphene heterojunction can be tuned by strain. It is found that the height of the schottky barrier can be tuned to be near zero under an in-plane compressive strain, and the band gap of the WS2 in the heterojunction is turned into a direct band gap from the indirect band gap with the increasing schottky barrier height under an in-plane tensile strain. Our calculation results may provide a potential guidance for designing and fabricating the WS2-based field effect transistors.
|
Received: 16 July 2017
Revised: 24 August 2017
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
82.65.+r
|
(Surface and interface chemistry; heterogeneous catalysis at surfaces)
|
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11202178). |
Corresponding Authors:
Jian-Guo Lin
E-mail: lin_j_g@xtu.edu.cn
|
Cite this article:
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国) Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory 2017 Chin. Phys. B 26 127101
|
[1] |
FerrariA C, Meyer J C, ScardaciV, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S and Roth S 2006 Phys. Rev.Lett. 97 187401
|
[2] |
Castro Neto A H, Guinea F, Peres N M R, NovoselovK S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[3] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[4] |
Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[5] |
Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
|
[6] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[7] |
Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2009 Phys. Rev. Lett. 103 226803
|
[8] |
Ba S H, Lee Y, Sharma B K, Lee H J, Kim J H and Ahn J H 2013 Carbon 51 236
|
[9] |
Eknapakul T, King P D C, Asakawa M, Buaphet P, He R H, Mo S K, Takagi H, Shen K M, Baumberger F, Sasagawa T, Jungthawan S and Meevasana W 2014 Nano Lett. 14 1312
|
[10] |
Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
|
[11] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2012 Nat. Nanotech. 8 100
|
[12] |
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
|
[13] |
Liu B, Wu L J, ZhaoY Q, Wang L Z and Cai M Q 2016 RSC Adv. 6 92473
|
[14] |
Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 Eur. Phys. J. B 89 80
|
[15] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[16] |
Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
|
[17] |
Zhang W J, Chu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4(7484) 3826
|
[18] |
Su J, Feng L P, Zhang Y and Liu Z 2016 Phys. Chem. Chem. Phys. 18 16882
|
[19] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
|
[20] |
Xue J M, Sanchez Y J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Leroy B J 2011 Nat. Mater. 10 282
|
[21] |
He Jun, Chen K Q, Fan Z Q, Tang L M and Hu W P 2010 Appl. Phys. Lett. 97 193305
|
[22] |
Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Carbon 100 492
|
[23] |
Peng J, Zhou Y H and Chen K Q 2015 Org. Electron. 27 137
|
[24] |
Neek-Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
|
[25] |
Cai Y, Chu C P, Wei C M and Chou M Y 2013 Phys. Rev. B 88 245408
|
[26] |
Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
|
[27] |
Liu B, Wu L J, Zhao Y Q, Wang L Z and Caii M Q 2016 Phys. Chem. Chem. Phys. 18 19918
|
[28] |
Ning F, Wang D, Tang L M, Zhang Y and Chen K Q 2014 J. Appl. Phys. 116 094308
|
[29] |
Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Su Y T, Li L J, Guo W and Lau S P 2013 ACS Nano 7 7126
|
[30] |
He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
|
[31] |
Hu W, Wang T and Yang J L 2015 J Mater. Chem. C 3 4756
|
[32] |
Peelaers H and Van de Walle C G 2012 Phys. Rev. B 86 241401
|
[33] |
Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2015 Phys. Chem. Chem. Phys. 17 27088
|
[34] |
Ganatra R and Zhang Q 2014 ACS Nano 8 4074
|
[35] |
Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B and Cai M Q 2016 J. Power Sources 313 96
|
[36] |
Cao D, Liu B, Yu H L, Hu W Y and Cai M Q 2013 Eur. Phys. J. B 86 504
|
[37] |
Cao D, Liu B, Yu H L, Hu W Y and Cai M Q 2015 Eur. Phys. J. B 88 75
|
[38] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[40] |
Grimme S and Semiempirical 2006 Comput. Chem. 27 1787
|
[41] |
Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B and Cai M Q 2017 J. Mater. Chem. C 5 5356
|
[42] |
Wu L J, ZhaoY Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
|
[43] |
Wang L Z, ZhaoY Q, Liu B, Wu L J and Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
|
[44] |
Zhao Y Q, Liu B, Yu Z L, Cao D and Cai M Q 2017 Electrochim. Acta 247 891
|
[45] |
Hu W, Wang T, Zhang R Q and Yang J L 2016 J. Mater. Chem. C 4 1776
|
[46] |
Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
|
[47] |
Cai M Q, Zheng Y, Wang B and Yang G W 2009 Appl. Phys. Lett. 95 232901
|
[48] |
Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910.
|
[49] |
Cai M Q, Zheng Y and Woo C H 2011 J. Appl. Phys. 109 024103.
|
[50] |
Cao D, Cai M Q and Hu W Y 2011 J. Appl. Phys. 109 114107.
|
[51] |
Gong C, Colombo L, Wallace R M and Cho K 2014 Nano Lett. 14 1714
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|