|
|
Nano-infrared imaging of localized plasmons in graphene nano-resonators |
Jiahua Duan(段嘉华)1,2, Runkun Chen(陈闰堃)1,2, Jianing Chen(陈佳宁)1,2,3 |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract We conduct in-situ near-field imaging of propagating and localized plasmons (cavity and dipole modes) in graphene nano-resonator. Compared with propagating graphene plasmons, the localized modes show twofold near-field amplitude and high volume confining ability (~106). The cavity resonance and dipole mode of graphene plasmons can be effectively controlled through optical method. Furthermore, our numerical simulation shows quantitative agreement with experimental measurements. The results provide insights into the nature of localized graphene plasmons and demonstrate a new way to study the localization of polaritons in Van der Waals materials.
|
Received: 11 August 2017
Revised: 31 August 2017
Accepted manuscript online:
|
PACS:
|
78.67.Wj
|
(Optical properties of graphene)
|
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the National Natural Science Foundation of China (Grant No. 11474350), the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, China and the State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, Peking University, China. |
Corresponding Authors:
Jianing Chen
E-mail: jnchen@iphy.ac.cn
|
Cite this article:
Jiahua Duan(段嘉华), Runkun Chen(陈闰堃), Jianing Chen(陈佳宁) Nano-infrared imaging of localized plasmons in graphene nano-resonators 2017 Chin. Phys. B 26 117802
|
[1] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[2] |
Rotenberg N and Kuipers L 2014 Nat. Photon. 8 919
|
[3] |
Basov D N, Fogler M M and De Abajo F J G 2016 Science 354 6309
|
[4] |
Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L and Koppens F 2017 Nat. Mater. 16 182
|
[5] |
Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
|
[6] |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
|
[7] |
Dai S Y, Fei Z, Ma Q, Rodin A, Wagner M, McLeod A, Liu M, Gannett W, Regan W and Watanabe K 2014 Science 343 1125
|
[8] |
Yoxall E, Schnell M, Nikitin A Y, Txoperena O, Woessner A, Lundeberg M B, Casanova F, Hueso L E, Koppens F H and Hillenbrand R 2015 Nat. Photon. 9 674
|
[9] |
Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G and Polini M 2015 Nat. Mater. 14 421
|
[10] |
Nie S and Emory S R 1997 Science 275 1102
|
[11] |
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
|
[12] |
Engheta N 2007 Science 317 1698
|
[13] |
Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J and Xu H 2010 Nano Lett. 10 1950
|
[14] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[15] |
Gramotnev D K and Bozhevolnyi S I 2014 Nat. Photon. 8 13
|
[16] |
Schnell M, Alonso-Gonzalez P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A and Hillenbrand R 2011 Nat. Photon. 5 283
|
[17] |
Khurgin J B 2015 Nat. Nanotechnology 10 2
|
[18] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[19] |
Low T and Avouris P 2014 ACS Nano 8 1086
|
[20] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[21] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
|
[22] |
Li Z, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H, Basov D N and 2008 Nat. Phys. 4 532
|
[23] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotechnology 6 630
|
[24] |
Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P and Xia F 2013 Nat. Photon. 7 394
|
[25] |
Ni G, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A, Liu M, Keilmann F, Özyilmaz B and Neto A C 2016 Nat. Photon. 10 244
|
[26] |
Efetov D K and Kim P 2010 Phys. Rev. Lett. 105 256805
|
[27] |
Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L and Muller D 2013 Science 342 614
|
[28] |
Chen J N, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A and Godignon P 2012 Nature 487 77
|
[29] |
Fei Z, Rodin A, Andreev G, Bao W, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M and Dominguez G 2012 Nature 487 82
|
[30] |
Ni G, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Ozyilmaz B, Neto A H C, Xie X and Fogler M M 2015 Nat. Mater. 14 1217
|
[31] |
Bai Q, Perrin M, Sauvan C, Hugonin J and Lalanne P 2013 Opt. Express 21 27371
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|