Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 118101    DOI: 10.1088/1674-1056/26/11/118101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y2Mo3O12 cermets

Xian-Sheng Liu(刘献省)1, Xiang-Hong Ge(葛向红)2,3, Er-Jun Liang(梁二军)2, Wei-Feng Zhang(张伟风)1
1. Henan Key Laboratory of Photovoltaic Materials and Laboratory of Low Dimensional Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China;
2. School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450051, China;
3. Zhongyuan University of Technology, Zhengzhou 450007, China
Abstract  Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient (TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19% for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al (presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.
Keywords:  negative thermal expansion      low thermal expansion      conductivity      composite  
Received:  08 May 2017      Revised:  13 July 2017      Accepted manuscript online: 
PACS:  81.05.Mh (Cermets, ceramic and refractory composites)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974183 and 11104252), the Doctoral Fund of the Ministry of Education of China (Grant No. 20114101110003), the Fund for Science & Technology Innovation Team of Zhengzhou, China (Grant No. 112PCXTD337), the Industrial Science and Technology Research Projects of Kaifeng, Henan Province, China (Grant No. 1501049), and the Key Research Projects of Henan Higher Education Institutions, China (Grant No. 18A140014).
Corresponding Authors:  Er-Jun Liang, Wei-Feng Zhang     E-mail:  ejliang@zzu.edu.cn;wfzhang@henu.edu.cn

Cite this article: 

Xian-Sheng Liu(刘献省), Xiang-Hong Ge(葛向红), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风) Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y2Mo3O12 cermets 2017 Chin. Phys. B 26 118101

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Gava V, Martinotto A L and Perottoni C A 2012 Phys. Rev. Lett. 109 195503
[3] Takenaka K, Okamoto Y, Shinoda T, Katayama N and Sakai Y 2017 Nature Commun. 8 14102
[4] Wang L, Wang C, Luo H B and Sun Y 2017 J. Phys. Chem. C 121 333
[5] Marinkovic B A, Ari M, Avillez R R, Rizzo F, Ferreira F F, Miller K J, Johnson M B and White M A 2009 Chem. Mater. 21 2886
[6] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[7] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[8] Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
[9] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
[10] Li T, Liu X S, Cheng Y G, Ge X H, Zhang M D, Lian H, Zhang Y, Liang E J and Li Y X 2017 Chin. Phys. B 26 016501
[11] Liu X S, Cheng Y G, Liang E J and Chao M J 2014 Phys. Chem. Chem. Phys. 16 12848
[12] Mittal R and Chaplot S L 2008 Phys. Rev. B 78 174303
[13] Suzukiw T and Omote A 2006 J. Am. Ceram. Soc. 89 691
[14] Matsumoto A, Kobayashi K, Nishio T and Ozaki K 2003 Mater. Sci. Forum 426-432 2279
[15] Verdon C and Dunand D C 1997 Scripta. Mater. 36 1075
[16] Holzer H and Dunand D C 1999 J. Mater. Res. 14 780
[17] Yilmaz S 2002 Compos. Sci. Technol. 62 1835
[18] Yilmaz S and Dunand D C 2004 Compos. Sci. Technol. 64 1895
[19] Liang E J 2010 Rec. Pat. Mater. Sci. 3 106
[20] Liu Q Q, Yang J, Cheng X N, Liang G S and Sun X J 2012 Ceram. Int. 38 541
[21] Yun D Q, Gu Q C and Wang X F 2005 Acta Mater. Comp. Sci. 22 25
[22] Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H and Liang E J 2013 J. Alloys Compd. 553 1
[23] Xiao X, Zhou W J, Liu X S, Chao M J, Li Y C, Zhang N, Liu Y M, Li Y X, Feng D S and Liang E J 2015 Ceram. Int. 41 2361
[24] Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Song W B, Liang E J and Chao M J 2016 Mater. Chem. Phys. 170 162
[25] Yamamura Y, Horikoshi A, Yasuzuka S, Saitoh H and Saito K 2011 Dalton Trans. 40 2242
[26] Gates S D and Lind C 2007 J. Solid State Chem. 180 3510
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!