|
|
Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser |
Jing Xu(徐静)1, Wen-Liang Liu(刘文良)1,2, Ning-Xuan Zheng(郑宁宣)1, Yu-Qing Li(李玉清)1,2, Ji-Zhou Wu(武寄洲)1,2,†, Peng Li (李鹏)1, Yong-Ming Fu(付永明)1, Jie Ma(马杰)1,2, Lian-Tuan Xiao(肖连团)1,2, and Suo-Tang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report on a research of the loading of ultracold sodium atoms in an optical dipole trap, generated by two beams from a high power fiber laser. The effects of optical trap light power on atomic number, temperature and phase space density are experimentally investigated. A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers. In a general estimation, an optimal value for each beam with a power of 9 W from the fiber laser is achieved. Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose-Einstein condensation with an optical dipole trap.
|
Received: 04 September 2020
Revised: 10 October 2020
Accepted manuscript online: 31 October 2020
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
37.10.De
|
(Atom cooling methods)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, 61705123, 62020106014, and 62011530047), the PCSIRT (Grant No. IRT-17R70), the 111 Project (Grant No. D18001), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201801D221004, 201901D211191, and 201901D211188), and the Shanxi 1331 KSC. |
Corresponding Authors:
†Corresponding author. E-mail: wujz@sxu.edu.cn
|
Cite this article:
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂) Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser 2021 Chin. Phys. B 30 033701
|
1 Anderson M, Ensher J, Matthews C and Cornell E 1995 Science 269 198 2 Davis K B, Mewes M O, Andrews M R, Van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 3 Greiner M, Regal C A and Jin D S 2003 Nature 426 537 4 Becker D, Lachmann M D and Seidel S T 2018 Nature 562 391 5 Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201 6 Jin D S and Ye J 2012 Chem. Rev. 112 4801 7 B\"uchler H P, Demler E, Lukin M, Micheli A, Prokof\'ev N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404 8 Bloch I, Dalibard J and Nascimb\'ene S 2012 Nat. Phys. 8 267 9 Barredo D, Labuhn H, Ravets S, Lahaye T, Browaeys A and Adams C S 2015 Phys. Rev. Lett. 114 113002 10 Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You l 2017 Science 355 620 11 Bloch I 2008 Nature 453 1016 12 Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S and Pan J W Nat. Phys.12 783 13 Xin X T, Huang F, Xu Z J and Li H B 2014 Chin. Phys. B 23 070307 14 Zhu K Q, Yu Z F, Gao J M, Zhang A X, Xu H P and Xue J K 2019 Chin. Phys. B 28 10307 15 Qin L J 2019 Chin. Phys. B 28 126701 16 Ketterle W and Van D N J Adv. At. Mol. Opt. Phys.37 181 17 Kinoshita T, Wenger T and Weiss D S 2005 Phys. Rev. A 71 011602 18 Griesmaier A, Stuhler J and Pfau T 2006 Appl. Phys. B 82 211 19 Lauber T, Kueber J, Wille O and Birkl G 2011 Phys. Rev. A 84 043641 20 Duan Y F, Jiang B N, Sun J F, Liu K K, Xu Z and Wang Y Z 2013 Chin. Phys. B 22 056701 21 Cl\'ement J F, Brantut J P, Robert-de-Saint-Vincent M, Nyman R A, Aspect A, Bourdel T and Bouyer P 2009 Phys. Rev. A 79 061406 22 Ulitzsch J, Babik D, Roell R and Weitz M 2017 Phys. Rev. A 95 043614 23 Fu Z K, Huang L H, Meng Z M, Wang P J, Zhang L, Zhang S Z, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110 24 Colussi V E, Greene C H and D'lncao J P 2016 J. Phys. B-At. Mol. Opt. 49 064012 25 Qi W, Liang M C, Zhang H, Wei Y D, Wang W W, Wang X J and Zhang X B 2019 Chin. Phys. Lett. 36 093701 26 Koppinger M P, McCarron D J, Jenkin D L, Molony P K, Cho H W, Cornish S L, Le Sueur C R, Blackley C L and Hutson J M 2014 Phys. Rev. A 89 033604 27 Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023 28 Li X K, Zhu B, He X D, Wang F D, Guo M Y, Xu Z F, Zhang S Z and Wang D J 2015 Phys. Rev. Lett. 114 255301 29 Marangoni B S, Menegatti C R and Marcassa L G 2012 J. Phys. B: At. Mol. Opt. Phys. 45 175301 30 Kuppens S J M, Corwin K L, Miller K W, Chupp T E and Wieman C E 2000 Phys. Rev. A 62 013406 31 Liao G B, Wu K S, Shih C Y, Cheng Y H, Sun L A, Lin Y J and Chang M S 2017 JOSA B 34 869 32 Landau L D and Lifshitz E M1976 Course of Theoretical Physics: Mechanics (Oxford: Pergamon Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|