|
|
M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94 |
Ju Meng(孟举)1, Wen-Xian Li(李文显)2, Ji-Guang Li(李冀光)1,†, Ze-Qing Wu(吴泽清)1, Jun Yan(颜君)1,3, Yong Wu(吴勇)1,3, and Jian-Guo Wang(王建国)1 |
1 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 3 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China |
|
|
Abstract Systematic calculations and assessments are performed for the magnetic dipole (M1) transition energies and rates between the $^{2}\!F^{\rm o}_{5/2},_{7/2} $ levels in the ground configuration {4d}$^{10}${4f} along the Ag-like isoelectronic sequence with ${62 } \le Z \le { 94}$ based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code. The electron correlations, Breit interaction and quantum electrodynamics effects are taken into account in the present calculations. The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results. For transition energies, our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%. The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac-Hartee-Fock calculations by Grumer et al. [Phys. Rev. A 89 062501 (2014)] is less than 0.13 % along the isoelectronic sequence. Furthermore, the corresponding M1 transition rates are also reported. The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas.
|
Received: 11 May 2021
Revised: 03 July 2021
Accepted manuscript online: 12 July 2021
|
PACS:
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 11934004, 11404180, 11604052, and 11774037), and the National Key Research and Development Program of China (Grant No. 2017YFA0402300). |
Corresponding Authors:
Ji-Guang Li
E-mail: li_jiguang@iapcm.ac.cn
|
Cite this article:
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国) M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94 2022 Chin. Phys. B 31 013101
|
[1] Skinner C H 2008 Can. J. Phys. 86 285 [2] Neu R, Dux R, Kallenbach A, Putterich T, Balden M, Fuchs J C, Herrmann A, Maggi C F, O'Mullane M, Pugno R, Radivojevic I, Rohde V, Sips A C C, Suttrop W, Whiteford A and team A U 2005 Nucl. Fusion 45 209 [3] Matthews G F, Coad P, Greuner H, Hill M, Hirai T, Likonen J, Maier H, Mayer M, Neu R, Philipps V, Pitts R, Riccardo V and Contributors J E 2009 J. Nucl. Mater. 390-391 934 [4] Qiu M L, Li W X, Zhao Z Z, Yang Y, Xiao J, Brage T, Hutton R and Zou Y 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144029 [5] Biedermann C, Radtke R, Seidel R and Putterich T 2009 Phys. Scr. 2009 014026 [6] Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. A 90 042513 [7] Safronova M S, Dzuba V A, Flambaum V V, Safronova U I, Porsev S G and Kozlov M G 2014 Phys. Rev. Lett. 113 030801 [8] Dzuba V A, Derevianko A and Flambaum V V 2012 Phys. Rev. A 86 054502 [9] Sugar J and Kaufman V 1981 Phys. Scr. 24 742 [10] Fei Z, Zhao R, Shi Z, Xiao J, Qiu M, Grumer J, Andersson M, Brage T, Hutton R and Zou Y 2012 Phys. Rev. A 86 062501 [11] Zhao R, Grumer J, Li W, Xiao J, Brage T, Huldt S, Hutton R and Zou Y 2014 J. Phys. B: At. Mol. Opt. Phys. 47 185004 [12] Murata S, Nakajima T, Safronova M S, Safronova U I and Nakamura N 2017 Phys. Rev. A 96 062506 [13] Nakamura N, Kikuchi H, Sakaue H A and Watanabe T 2008 Rev. Sci. Instrum. 79 063104 [14] Safronova U I, Savukov I M, Safronova M S and Johnson W R 2003 Phys. Rev. A 68 062505 [15] Ivanova E P 2011 At. Data Nucl. Data Tables 97 1 [16] Ivanova E P 2009 At. Data Nucl. Data Tables 95 786 [17] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z and Nakamura N 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035003 [18] Grumer J, Zhao R F, Brage T, Li W X, Huldt S, Hutton R and Zou Y M 2014 Phys. Rev. A 89 062511 [19] Safronova U I, Safronova A S, Beiersdorfer P and Johnson W R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035005 [20] Safronova U I and Safronova A S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074026 [21] Gu M F 2008 Can. J. Phys. 86 675 [22] Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154 [23] Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227 [24] Gu M F 2005 At. Data Nucl. Data Tables 89 267 [25] Gu M F 2005 Astrophys. J. Suppl. Ser. 156 105 [26] Li W, Xiao J, Shi Z, Fei Z, Zhao R, Brage T, Huldt S, Hutton R and Zou Y 2016 J. Phys. B: At. Mol. Opt. Phys. 49 105002 [27] Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S, Hutton R, Zou Y M, Zeng J L, Chen C Y and Yan J 2015 Astrophys. J. Suppl. Ser. 218 16 [28] Guo X L, Huang M, Yan J, Li S, Si R, Li C Y, Chen C Y, Wang Y S and Zou Y M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144020 [29] Wang K, Li D F, Liu H T, Han X Y, Duan B, Li C Y, Li J G, Guo X L, Chen C Y and Yan J 2014 Astrophys. J. Suppl. Ser. 215 26 [30] Fei Z, Li W, Grumer J, Shi Z, Zhao R, Brage T, Huldt S, Yao K, Hutton R and Zou Y 2014 Phys. Rev. A 90 052517 [31] Sucher J 1980 Phys. Rev. A 22 348 [32] Lindgren I 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441 [33] Shi Z, Zhao R F, Li W X, Tu B S, Yang Y, Xiao J, Huldt S, Hutton R and Zou Y M 2014 Rev. Sci. Instrum. 85 063110 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|