|
|
Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation |
Bo-Shi Mu(牟博石)1,2, Yi Zhang(张熠)1, Qing-Feng Bian(边庆丰)1, Cheng-Ren Li(李成仁)1,†, Zhi-Chao Li(李志超)1, Yun-Ting Chu(褚云婷)1, Feng Zhao(赵峰)1, and Jing-Chang Sun(孙景昌)1 |
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; 2 School of Science, Qiqihar University, Qiqihar 161006, China |
|
|
Abstract A series of Sr2MgSi2O7:Tb3+ nanophosphors is prepared using a high-temperature solid-state reaction. The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb3+ ions. However, the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb3+ concentration. Unlike earlier investigations on down-conversion emission of Tb3+ ion excited by deep ultraviolet light, in this work, the photoluminescence characteristics of Sr2MgSi2O7 nanophosphors doped with different Tb3+ concentrations are analyzed under 374-nm excitations. The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%. The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb3+ ions.
|
Received: 06 March 2021
Revised: 19 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004092) and the Foundation of Science and Technology Department of Liaoning Province, China (Grant No. 201602455). |
Corresponding Authors:
Cheng-Ren Li
E-mail: lnnulicr@aliyun.com
|
Cite this article:
Bo-Shi Mu(牟博石), Yi Zhang(张熠), Qing-Feng Bian(边庆丰), Cheng-Ren Li(李成仁), Zhi-Chao Li(李志超), Yun-Ting Chu(褚云婷), Feng Zhao(赵峰), and Jing-Chang Sun(孙景昌) Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation 2021 Chin. Phys. B 30 123201
|
[1] Shin S Y and Park S 2021 J. Mater. Sci. 32 4311 [2] Shi J J, Liu B, Wang Q G, Tang H L, Wu F, Li D Z, Zhao H Y, Wang Z S, Deng W, Xu Z A, Xu J Y, Xu X D and Xu J 2018 Chin. Phys. B 27 097801 [3] Wei Z T, Chen W B, Wang Z Q, Li N, Zhang P F, Zhang M G, Zhao L and Qiang Q P 2021 J. Am. Ceram. Soc. 104 1750 [4] Hernández A G, Boyer D, Potdevin A, Chadeyon G, Murillo A G, Romo F C and Mahiou R 2017 Opt. Mater. 73 350 [5] He W X, Du H L, Fu J, Luan F F, Li D W, Sun L Y and Guo D C 2021 New J. Chem. 45 1446 [6] Wang Q, Qiu J B, Song Z G, Zhou D C and Xu X H 2014 Chin. Phys. B 23 064211 [7] dos Santos J F M, Terra I A A, Astrath N G C, Guimarães F B, Baesso M L, Nunes L A O and Catunda T 2015 J. Appl. Phys. 117 053102 [8] Gao X Y, Li C R, Li S F, Zhang H B, Li Z C, Hong Y Z and Sun J C 2017 J. Lumin. 190 457 [9] Zhao L, Wang D Y, Wang Y H and Tao Y 2015 J. Am. Ceram. Soc. 97 3913 [10] Bianchi G S, Zanuto V S, Astrath F B G, Malacarne L C, Terra I A A, Catunda T, Nunes L A O, Jacinto C, Andrade L H C, Lima S M, Baesso M L and Astrath N G C 2013 Opt. Lett. 38 4667 [11] Nikifor R and Glauco S M 2017 J. Lumin. 190 249 [12] Huang X Y, Li B and Guo H 2017 J. Alloys Compd. 695 2773 [13] Alves L L S, de Lima R C, Schiavon M A, Gonçalves R R, Barbosa H P and Ferrari J L 2020 J. Lumin. 222 117109 [14] Cui H, Zhu P F, Zhu H Y, Li H D and Cui Q L 2014 Chin. Phys. B 23 057801 [15] Kumar D, Sharma M, Haranath D and Pandey O P 2017 J. Alloys Compd. 695 726 [16] Yu H, Qi Y, Wu Y, Zhang J and Chen B 2016 J. Nanosci. Nanotechno 16 3886 [17] Chen Y F, Bao Y, Yu Z P, Yang G C and Zhang L 2017 J. Lumin. 181 71 [18] Barbara S S, Natalia P, Tomasz G, Maria Band Wojciech A P 2017 J. Lumin. 188 400 [19] Srikanth K, Narsihma L, Narsimulu M, Kumar M S, Laxminarayana K and Srinivas M 2020 AIP Conf. Proc. 2269 030058 [20] Bispo A G, Lima S A M, Lanfredi S, Praxedes F R and Pires A M 2019 J. Lumin. 214 116604 [21] Jyothi K R, Bhagya K R, Nagabhushana H, Hegde V N, Murugendrappa M V, Prakash A P G, Daruka P B and Nagabhushana N M 2020 Physica B 590 412195 [22] Igashira K, Nakauchi D, Ogawa T, Kato T, Kawaguchi N and Yanagida T 2020 Opt. Mater. 109 110270 [23] Homayoni H, Ma L, Zhang J, Sahi S K, Rashidi L H, Bui B and Chen W 2016 Photodiagn. Photodyn. Ther. 16 90 [24] Hai O, Ren Q, Wu X L, Zhang Q, Zhang Z H and Zhang Z Z 2019 J. Alloys Compd. 779 892 [25] Tshabalala M A, Swart H C, Dejene F B, Coetsee E and Ntwaeaborwa O M 2016 Appl. Surf. Sci. 360 409 [26] Sahu I P 2016 Appl. Phys. A 122 855 [27] Wang Y, Chen Y, Sun Q and Yan B 2017 J. Mater. Res. 32 547 [28] Yuan B, Song Y H, Kong L, Dai C B and Zou H F 2018 Physica B 550 75 [29] He L, Jia B L, Che L Y, Li W S and Sun W M 2016 J. Lumin. 172 317 [30] Liu X, Zhang X X and Zhou Z F 2016 Mater. Res. Bull. 79 84 [31] Pathak C S, Mishra D D, Agarwala V and Mandal M N 2012 Ceram. Int. 38 6191 [32] Vikas D, Raunak K T, Rituraj C and Vijay S 2021 Optik. 226 165926 [33] Bhuneshwar V, Baghel R N, Bisen D P, Brahme N and Khare A 2020 J. Alloys Compd. 838 155326 [34] Blasse G 1968 Phys. Lett. A 28 444 [35] Zhang J Y, Zhuang W D, Xing X R, Liu R H, Chen G T, Liu Y H and Chen L 2014 Mater. Lett. 131 248 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|