Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 107103    DOI: 10.1088/1674-1056/26/10/107103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of disorder on exciton dissociation in conjugated polymers

Yuwen Feng(冯誉雯)1, Hui Zhao(赵晖)1, Yuguang Chen(陈宇光)1, Yonghong Yan(鄢永红)2
1. Department of Physics, Tongji University, Shanghai 200092, China;
2. Department of Physics, Shaoxing University, Shaoxing 312000, China
Abstract  

By using a multi-configurational time-dependent Hartree-Fock (MCTDHF) method for the time-dependent Schrödinger equation and a Newtonian equation of motion for lattice, we investigate the disorder effects on the dissociation process of excitons in conjugated polymer chains. The simulations are performed within the framework of an extended version of the Su-Schrieffer-Heeger model modified to include on-site disorder, off-diagonal, electron-electron interaction, and an external electric field. Our results show that Coulomb correlation effects play an important role in determining the exciton dissociation process. The electric field required to dissociate an exciton can practically impossibly occur in a pure polymer chain, especially in the case of triplet exciton. However, when the on-site disorder effects are taken into account, this leads to a reduction in mean dissociation electric fields. As the disorder strength increases, the dissociation field decreases effectively. On the contrary, the effects of off-diagonal disorder are negative in most cases. Moreover, the dependence of exciton dissociation on the conjugated length is also discussed.

Keywords:  polymer      exciton      electron-electron correlation      dynamical evolution  
Received:  18 April 2017      Revised:  20 June 2017      Accepted manuscript online: 
PACS:  71.38.Ht (Self-trapped or small polarons)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474218 and 11575116).

Corresponding Authors:  Hui Zhao     E-mail:  zhaoh@fudan.edu.cn

Cite this article: 

Yuwen Feng(冯誉雯), Hui Zhao(赵晖), Yuguang Chen(陈宇光), Yonghong Yan(鄢永红) Effect of disorder on exciton dissociation in conjugated polymers 2017 Chin. Phys. B 26 107103

[1] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brédas J L, L ö gdlund M and Salaneck W R 1999 Nature 397 121
[2] Dodabalapur A, Katz H E, Torsi L and Haddon R C 1995 Science 269 1560
[3] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[4] Heeger A J 2001 Rev. Mod. Phys. 73 681
[5] Chandross M, Mazumdar S, Jeglinski X W S, Vardeny Z V, Kwock E and Miller T M 1994 Phys. Rev. B 50 14702
[6] Sariciftci N S, Smilowitz L, Heeger A J and Wudl F 1992 Science 258 1474
[7] Shaheen S E, Brabec C J, Padinger F, Fromherz T, Hummelen J C and Sariciftci N S 2001 Appl. Phys. Lett. 78 841
[8] Chen L C, Godovsky D, Ingan ä s O, Svensson M and Anderson M R 2000 Adv. Mater. (Weinheim, Ger.) 12 1367
[9] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C and Holmes A B 1995 Nature 376 498
[10] Yu G and Heeger A J 1995 J. Appl. Phys. 78 4510
[11] Gregg B A and Hanna M C 2003 J. Appl. Phys. 93 3605
[12] Popovic Z D, Hor A M and Loutfy R O 1998 Chem. Phys. 127 451
[13] Basko D M and Conwell E M 2003 Synth. Metals 139 819
[14] Arkhipov V I, Emelianova E V and B ä ssler H 1999 Phys. Rev. Lett. 82 1321
[15] Fu R L, Guo G Y and Sun X 2000 Phys. Rev. B 62 15735
[16] Too C O, Wallace G G, Burrell A K, Collis G E, Officer D L, Boge E Q, Brodie S G and Evans E J 2001 Synth. Metals 123 53
[17] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P and de Leeuw D M 1999 Nature 401 685
[18] Kline R J, McGehee M D, Kadnikova E N, Liu J and Fr é chet J M J 2003 Adv. Mater. 15 1519
[19] Kline R J, McGehee M D, Kadnikova E N, Liu J, Fr é chet J M J and Toney M F 2005 Macromolecules 38 3312
[20] Kanemoto K, Furukawa K, Negishi N, Aso Y and Otsubo T 2007 Phys. Rev. B 76 155205
[21] Yuan X J, Dong X F, Li D M and Liu D S 2011 J. Chem. Phys. 134 244901
[22] Yuan X J, Li D M, Yin S, Gao K, Cui B and Liu D S 2012 Org. Electron. 13 2094
[23] B ö hlin J, Linares M and Stafstr ö m S 2011 Phys. Rev. B 83 085209
[24] Konezny S J, Rothberg L J, Galvin M E and Smith D L 2010 Appl. Phys. Lett. 97 143305
[25] Menon A, Dong H, Niazimbetova Z I, Rothberg L J and Galvin M E 2002 Chem. Mater. 14 3668
[26] Sariciftci N S 1997 Primary Photoexcitations in Conjugated Polymers:Molecular Exciton versus Semiconductor Band Model (Singapore:World Scientific)
[27] Shuai Z, Beljonne D, Silbey R J and Bredas J L 2000 Phys. Rev. Lett. 84 131
[28] Beljonne D, Ye A, Shuai Z and Brédas J L 2004 Adv. Func. Mater. 14 684
[29] Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S and Vardeny Z V 2001 Nature 409 494
[30] Wohlgenannt M, Yang C and Vardeny Z V 2002 Phys. Rev. B 66 241201(R)
[31] Zhao H, Yao Y, An Z and Wu C Q 2008 Phys. Rev. B 78 035209
[32] Zhao H, Chen Y G, Yan Y H, An Z and Wu C Q 2012 Europhys. Lett. 100 57005
[33] Miranda R P, Fisher A J, Stella L and Horsfield A P 2011 J. Chem. Phys. 134 244101
[34] Miranda R P, Fisher A J, Stella L and Horsfield A P 2011 J. Chem. Phys. 134 244102
[35] Surján P R, Lázár A and Kállay M 1998 Phys. Rev. B 58 3490
[36] Mazumdar S and Dixit S N 1983 Phys. Rev. Lett. 51 292
[37] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[38] Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
[39] Brazovskii S A and Kirova N N 1981 Sov. Phys. JETP Lett. 33 4
[40] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[41] Liu X J, Zhang Y L and An Z 2013 Org. Electron. 14 2692
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[3] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[4] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[5] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[6] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[7] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[8] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[9] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[10] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[11] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[12] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[13] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[14] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[15] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
No Suggested Reading articles found!