Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 107201    DOI: 10.1088/1674-1056/26/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics

Ya-Cui Zhang(张亚翠), Jian Liu(刘剑), Yi Li(李宜), Yu-Fei Chen(陈宇飞), Ji-Chao Li(李吉超), Wen-Bin Su(苏文斌), Yu-Cheng Zhou(周昱成), Jin-Ze Zhai(翟近泽), Teng Wang(王腾), Chun-Lei Wang(王春雷)
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
Abstract  

Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.

Keywords:  Sr0.7Ba0.3Nb2O6-δ      interstitial doping      thermoelectric properties  
Received:  22 June 2017      Revised:  24 July 2017      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132, 51231007, and 11374186).

Corresponding Authors:  Jian Liu     E-mail:  liujjx@sdu.edu.cn

Cite this article: 

Ya-Cui Zhang(张亚翠), Jian Liu(刘剑), Yi Li(李宜), Yu-Fei Chen(陈宇飞), Ji-Chao Li(李吉超), Wen-Bin Su(苏文斌), Yu-Cheng Zhou(周昱成), Jin-Ze Zhai(翟近泽), Teng Wang(王腾), Chun-Lei Wang(王春雷) Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics 2017 Chin. Phys. B 26 107201

[1] Bell L E 2008 Science 321 145
[2] Uher D 2016 Materials Aspect of Thermoelectricity (Boca Raton:Taylor & Francis Group) pp. 7-11
[3] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[4] Kim H S, Gibbs Z M, Tang Y L, Wang H and Snyder G L 2015 APL. Mater. 3 041506
[5] Kuei F H, Loo S, Guo F and Chen W 2004 Science 303 818
[6] Wu J, Yang J Y, Zhang H, Zhang J S, Feng S L, Liu M, Peng J Y, Zhu W and Zou T 2010 J. Alloys Compd. 507 167
[7] Yu Z X, LiJ F, Zhang B P and Ge Z H 2012 J. Electron. Mater. 41 1337
[8] Mohiddon M A and Yadav K L 2007 J. Appl. Phys. 101 094101
[9] Li Z Y and Li J F 2011 J. Electron. Mater. 41 1365
[10] Li Z Y and Li J F 2013 Adv. Energy Mater. 4 1300937
[11] Wang X Y, Xie W J, Li H and Tang X F 2011 Intermetallics 19 1024
[12] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[13] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[14] Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U and Sodeoka S 2000 Jpn. J. Appl. Phys. 39 1127
[15] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[16] Lee S 2011 J. Mater. Res. 26 26
[17] Lee S 2012 Eur. Ceram. Soc. 32 3971
[18] Kaurova I A, Kuz'micheva G M, Ivleva L I, Chernyshev V V, Rybakov V B and Domoroshchina E N 2015 J. Alloys Compd. 638 159
[19] Chan J H, Bock J A, Guo H Z, Trolier-McKinstry S and Randall C A 2017 J. Mater. Res. 32 1160
[20] Chan J H, Bock J A, Guo H Z, Trolier-McKinstry S and Randall C A 2016 J. Am. Ceram. Soc. 100 774
[21] Kolodiazhnyi T, Sakurai H, Vasylkiv O, Borodianska H and Mozharivskyj Y 2014 Appl. Phys. Lett. 104 111903
[22] Lee S, Wilke R H T, Trolier-McKinstry S, Zhang S J and Randall C A 2010 Appl. Phys. Lett. 96 031910
[23] Neurgaonkar R R, Oliver J R, Cory W K, Cross L E and Viehland D 1994 Ferroelectrics 160 265
[24] Peter A, Hajdara I, Lengyel K, Dravecz G, Kovacs L and Toth A 2008 J. Alloys Compd. 463 398
[25] Cai K, Jiang F, Deng P Y, Ma J T and Guo D 2015 J. Am. Ceram. Soc. 98 3165
[26] Chen X M, Ma H Y, Ding W, Zhang Y, Zhao X G, Liang X and Liu P 2011 J. Am. Ceram. Soc. 94 3364
[27] Yao Y B, Mak C L and Ploss B 2012 J. Eur. Ceram. Soc. 32 4353
[28] DandeneauC S, Yang Y H, Krueger B W, Olmstead M A, Bordia R K and Ohuchi F S 2014 Appl. Phys. Lett. 104 101607
[29] Jamieson P B, Abrahams S C and Bernstein J L 1968 J. Chem. Phys. 48 5048
[30] Bock J A, Chan J H, Tsur Y, Trolier-McKinstry S and RandallC A 2016 J. Am. Ceram. Soc. 99 3435
[31] Liu J, Wang C L, Li Y, Su W B, Zhu Y H, Li J C and Mei L M 2013 J. Appl. Phys. 114 223714
[32] Zhang X, Liu J, Li Y, Su W B, Li J C, Zhu Y H, Li M K, Wang C M and Wang C L 2015 Chin. Phys. Lett. 32 037201
[33] Li Y, Liu J, Hou Y Q, Zhang Y C, Zhou Y C, Su W B, Zhu Y H, Li J C and Wang C L 2015 Scr. Mater. 109 80
[34] Li Y, Liu J, Wang C L, Su W B, Zhu Y H, Li J C and Mei L M 2015 Chin. Phys. B 24 047201
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[7] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[8] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[9] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[10] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[11] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[12] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[13] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[14] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[15] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
No Suggested Reading articles found!