CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics |
Ya-Cui Zhang(张亚翠), Jian Liu(刘剑), Yi Li(李宜), Yu-Fei Chen(陈宇飞), Ji-Chao Li(李吉超), Wen-Bin Su(苏文斌), Yu-Cheng Zhou(周昱成), Jin-Ze Zhai(翟近泽), Teng Wang(王腾), Chun-Lei Wang(王春雷) |
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China |
|
|
Abstract Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.
|
Received: 22 June 2017
Revised: 24 July 2017
Accepted manuscript online:
|
PACS:
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132, 51231007, and 11374186). |
Corresponding Authors:
Jian Liu
E-mail: liujjx@sdu.edu.cn
|
Cite this article:
Ya-Cui Zhang(张亚翠), Jian Liu(刘剑), Yi Li(李宜), Yu-Fei Chen(陈宇飞), Ji-Chao Li(李吉超), Wen-Bin Su(苏文斌), Yu-Cheng Zhou(周昱成), Jin-Ze Zhai(翟近泽), Teng Wang(王腾), Chun-Lei Wang(王春雷) Thermoelectric properties of Li-doped Sr0.7Ba0.3Nb2O6-δ ceramics 2017 Chin. Phys. B 26 107201
|
[1] |
Bell L E 2008 Science 321 145
|
[2] |
Uher D 2016 Materials Aspect of Thermoelectricity (Boca Raton:Taylor & Francis Group) pp. 7-11
|
[3] |
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
|
[4] |
Kim H S, Gibbs Z M, Tang Y L, Wang H and Snyder G L 2015 APL. Mater. 3 041506
|
[5] |
Kuei F H, Loo S, Guo F and Chen W 2004 Science 303 818
|
[6] |
Wu J, Yang J Y, Zhang H, Zhang J S, Feng S L, Liu M, Peng J Y, Zhu W and Zou T 2010 J. Alloys Compd. 507 167
|
[7] |
Yu Z X, LiJ F, Zhang B P and Ge Z H 2012 J. Electron. Mater. 41 1337
|
[8] |
Mohiddon M A and Yadav K L 2007 J. Appl. Phys. 101 094101
|
[9] |
Li Z Y and Li J F 2011 J. Electron. Mater. 41 1365
|
[10] |
Li Z Y and Li J F 2013 Adv. Energy Mater. 4 1300937
|
[11] |
Wang X Y, Xie W J, Li H and Tang X F 2011 Intermetallics 19 1024
|
[12] |
Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
|
[13] |
Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[14] |
Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U and Sodeoka S 2000 Jpn. J. Appl. Phys. 39 1127
|
[15] |
Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
|
[16] |
Lee S 2011 J. Mater. Res. 26 26
|
[17] |
Lee S 2012 Eur. Ceram. Soc. 32 3971
|
[18] |
Kaurova I A, Kuz'micheva G M, Ivleva L I, Chernyshev V V, Rybakov V B and Domoroshchina E N 2015 J. Alloys Compd. 638 159
|
[19] |
Chan J H, Bock J A, Guo H Z, Trolier-McKinstry S and Randall C A 2017 J. Mater. Res. 32 1160
|
[20] |
Chan J H, Bock J A, Guo H Z, Trolier-McKinstry S and Randall C A 2016 J. Am. Ceram. Soc. 100 774
|
[21] |
Kolodiazhnyi T, Sakurai H, Vasylkiv O, Borodianska H and Mozharivskyj Y 2014 Appl. Phys. Lett. 104 111903
|
[22] |
Lee S, Wilke R H T, Trolier-McKinstry S, Zhang S J and Randall C A 2010 Appl. Phys. Lett. 96 031910
|
[23] |
Neurgaonkar R R, Oliver J R, Cory W K, Cross L E and Viehland D 1994 Ferroelectrics 160 265
|
[24] |
Peter A, Hajdara I, Lengyel K, Dravecz G, Kovacs L and Toth A 2008 J. Alloys Compd. 463 398
|
[25] |
Cai K, Jiang F, Deng P Y, Ma J T and Guo D 2015 J. Am. Ceram. Soc. 98 3165
|
[26] |
Chen X M, Ma H Y, Ding W, Zhang Y, Zhao X G, Liang X and Liu P 2011 J. Am. Ceram. Soc. 94 3364
|
[27] |
Yao Y B, Mak C L and Ploss B 2012 J. Eur. Ceram. Soc. 32 4353
|
[28] |
DandeneauC S, Yang Y H, Krueger B W, Olmstead M A, Bordia R K and Ohuchi F S 2014 Appl. Phys. Lett. 104 101607
|
[29] |
Jamieson P B, Abrahams S C and Bernstein J L 1968 J. Chem. Phys. 48 5048
|
[30] |
Bock J A, Chan J H, Tsur Y, Trolier-McKinstry S and RandallC A 2016 J. Am. Ceram. Soc. 99 3435
|
[31] |
Liu J, Wang C L, Li Y, Su W B, Zhu Y H, Li J C and Mei L M 2013 J. Appl. Phys. 114 223714
|
[32] |
Zhang X, Liu J, Li Y, Su W B, Li J C, Zhu Y H, Li M K, Wang C M and Wang C L 2015 Chin. Phys. Lett. 32 037201
|
[33] |
Li Y, Liu J, Hou Y Q, Zhang Y C, Zhou Y C, Su W B, Zhu Y H, Li J C and Wang C L 2015 Scr. Mater. 109 80
|
[34] |
Li Y, Liu J, Wang C L, Su W B, Zhu Y H, Li J C and Mei L M 2015 Chin. Phys. B 24 047201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|