Abstract A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306105), the National Science and Technology Major Project of China (Grant No. 2011ZX02708-002), the Tsinghua University Initiative Scientific Research Program and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation of China.
Shuqin Zhang(张书琴), Renrong Liang(梁仁荣), Jing Wang(王敬), Zhen Tan(谭桢), Jun Xu(许军) Heteromaterial-gate line tunnel field-effect transistor based on Si/Ge heterojunction 2017 Chin. Phys. B 26 018504
[1]
He J, Bian W, Tao Y D, Liu F, Song Y and Zhang X 2006 Chin. Phys. Lett. 23 3373
[2]
Theis T N and Solomon P M 2010 Science 327 1600
[3]
Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743
[4]
Verhulst A S, Leonelli D, Rooyackers R and Groeseneken G 2011 J. Appl. Phys. 110 024510
[5]
Wang P F, Lin X, Liu L, Sun Q Q, Zhou P, Liu X Y, Liu W, Gong Y and Zhang D W 2013 Science 341 640
[6]
Wang C, Wu C L, Wang J X, Huang Q Q and Huang R 2015 Sci. China Inform. Sci. 58 022402
[7]
Hähnel D, Oehme M, Sarlija M, Karmous A, Schmid M, Werner J, Kirfel O, Fischer I and Schulze J 2011 Solid-State Electron. 62 132
[8]
Zhou G, Lu Y, Li R, Zhang Q, Hwang W S, Liu Q, Vasen T, Chen C, Zhu H, Kuo J M, Koswatta S, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2011 IEEE Electron Device Lett. 32 1516
[9]
Kao K H, Verhulst A S, Vandenberghe W G, Sorée B, Magnus W, Leonelli D, Groeseneken G and Meyer K D 2012 IEEE Trans. Electron Devices 59 2070
[10]
Ganapathi K and Salahuddin S 2011 IEEE Electron Device Lett. 32 689
[11]
Li R, Lu Y, Zhou G, Liu Q, Chae S D, Vasen T, Hwang W S, Zhang Q, Fay P, Kosel T, Wistey M, Xing H and Seabaugh A 2012 IEEE Electron Device Lett. 33 363
[12]
Jiang Z, Zhuang Y Q, Li C, Wang P and Liu Y Q 2016 Chin. Phys. B 25 027701
[13]
Walke A M, Verhulst A S, Vandooren A, Verreck D, Simoen E, Rao V R, Groeseneken G, Collaert N and Thean A V Y 2013 IEEE Trans. Electron Devices 60 4057
[14]
Mookerjea S, Mohata D, Krishnan R, Singh J, Vallett A, Ali A, Mayer T, Narayanan V, Schlom1 D, Liu A and Datta S 2009 IEEE International Electron Device Meeting, December 7-9, 2009, Baltimore, MD, United States, p. 13.7.1
[15]
Liu Y, Wang H J, Yan J and Han G Q 2013 Chin. Phys. Lett. 30 088502
[16]
Kazazis D, Jannaty P, Zaslavsky A, Royer C L, Tabone C, Clavelier L and Cristoloveanu S 2009 Appl. Phys. Lett. 94 263508
[17]
Qiu Y X, Wang R S, Huang Q Q and Huang R 2014 J. Appl. Phys. 115 234505
[18]
Kim S H, Kam H, Hu C and Liu T J K 2009 Symposium on VLSI Technology, June 16-18, 2009, Kyoto, Japan, p. 178
[19]
Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
[20]
Zhan Z, Huang Q Q, Huang R, Jiang W Z and Wang Y Y 2013 Science China Information Scence 56 072401
[21]
Huang R, Huang Q Q, Chen S W, Wu C L, Wang J X, An X and Wang Y Y 2014 Nanotechnology 25 505201
[22]
Fischer I A, Bakibillah A S M, Golve M, Hähnel D, Isemann H, Kottantharayil A, Oehme M and Schulze J 2013 IEEE Electron Device Lett. 34 154
[23]
Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch N, Wirths S, Tiedemann A T, Trellenkamp S, Buca D, Zhao Q T and Mantl S 2015 IEEE International Electron Devices Meeting, Decemeber 7-9, 2015, Washington, USA, p. 22.3.1
[24]
Brouzet V, Salem B, Periwal P, Alcotte R, Chouchane F, Bassani F, Baron T and Ghibaudo G 2016 Solid-State Electron. 118 26
[25]
Zhao Q T, Richter S, Schulte-Braucks C, Knoll L, Blaeser S, Luong G V, Trellenkamp S, Schafer A, Tiedemann A, Hartmann J M, Bourdelle K and Mantl S 2015 IEEE J. Electron Devices Soc. 3 103
[26]
Kim M, Wakabayashi Y K, Yokoyama M, Nakane R, Takenaka M and Takagi S 2015 IEEE Trans. Electron Devices 62 9
[27]
Ghosh S, Koley K, Saha S K and Sarkar 2016 IEEE Trans. Electron Devices 63 3869
[28]
Zhou G, Li R, Vasen T, Qi M, Chae S, Lu Y, Zhang Q, Zhu H, Kuo J M, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2012 IEEE International Electron Devices Meeting, December 10-13, 2012 San Francisco, CA, USA, p. 32.6.1
[29]
Bhuwalka K K, Sedlmaier S, Ludsteck A K, Tolksdorf C, Schulze J and Eisele I 2004 IEEE Electron Device Lett. 51 279
[30]
Zhou G, Lu Y, Li R, Zhang Q, Hwang W S, Liu Q, Vasen T, Chen C, Zhu H, Kuo J M, Kosel T, Wistey M, Fay P, Seabaugh A and Xing H 2012 IEEE Electron Device Lett. 33 782
[31]
Cui N, Liang R and Xu J 2011 Appl. Phys. Lett. 98 142105
[32]
Saurabh S and Kumar M J 2011 IEEE Trans. Electron Devices 58 404
[33]
Sentaurus device user guide. 2013 Version Y-2013.03
[34]
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[35]
Kim S H, Agarwal S, Jacobson Z A, Matheu P, Hu C and Liu T J K 2010 IEEE Electron Device Lett. 31 1107
[36]
Schlosser M, Bhuwalka K K, Sauter M, Zibauer T, Sulima T and Eisele I 2009 IEEE Trans. Electron Devices 56 100
[37]
Sun C, Liang R, Liu L, Wang J and Xu J 2015 Appl. Phys. Lett. 107 132105
[38]
Lee C W, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 Solid-State Electron. 54 97
[39]
Choi S J, Moon D I, Kim S, Duarte J P and Choi Y K 2010 IEEE Electron Device Lett. 32 152
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.