Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018503    DOI: 10.1088/1674-1056/26/1/018503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photoemission cross section: A critical parameter in the impurity photovoltaic effect

Jiren Yuan(袁吉仁)1,2, Haibin Huang(黄海宾)2, Xinhua Deng(邓新华)1, Zhihao Yue(岳之浩)2, Yuping He(何玉平)2, Naigen Zhou(周耐根)2, Lang Zhou(周浪)2
1. School of Science, Nanchang University, Nanchang 330031, China;
2. Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
Abstract  A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic (IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters (short-circuit current density, open-circuit voltage, and conversion efficiency) of the IPV solar cell were calculated as functions of variable electron and hole photoemission cross sections. The presented results show that the electron and hole photoemission cross sections play critical roles in the IPV effect. When the electron photoemission cross section is <10-20 cm2, the conversion efficiency η of the IPV cell always has a negative gain (Δη<0) if the IPV impurity is introduced. A large hole photoemission cross section can adversely impact IPV solar cell performance. The combination of a small hole photoemission cross section and a large electron photoemission cross section can achieve higher conversion efficiency for the IPV solar cell since a large electron photoemission cross section can enhance the necessary electron transition from the impurity level to the conduction band and a small hole photoemission cross section can reduce the needless sub-bandgap absorption. It is concluded that those impurities with small (large) hole photoemission cross section and large (small) electron photoemission cross section, whose energy levels are near the valence (or conduction) band edge, may be suitable for use in IPV solar cells. These results may help in judging whether or not an impurity is appropriate for use in IPV solar cells according to its electron and hole photoemission cross sections.
Keywords:  solar cell      impurity photovoltaic effect      photoemission cross section      conversion efficiency  
Received:  24 August 2016      Revised:  16 October 2016      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  88.30.gg (Design and simulation)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61464007, 61306084, 11664025, and 51561022), the Postdoctoral Science Foundation of Jiangxi Province of China (Grant Nos. 2014KY32, 2013RC08, and 2015KY12), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20151BAB207055 and 20161BAB201012), and the Postdoctoral Science Foundation of China (Grant No. 2016M592115).
Corresponding Authors:  Jiren Yuan     E-mail:  yuanjiren@ncu.edu.cn

Cite this article: 

Jiren Yuan(袁吉仁), Haibin Huang(黄海宾), Xinhua Deng(邓新华), Zhihao Yue(岳之浩), Yuping He(何玉平), Naigen Zhou(周耐根), Lang Zhou(周浪) Photoemission cross section: A critical parameter in the impurity photovoltaic effect 2017 Chin. Phys. B 26 018503

[1] Keevers M J and Green M A 1994 J. Appl. Phys. 75 4022
[2] Luque A and Marti A 1997 Phys. Rev. Lett. 78 5014
[3] Schmeits M and Mani A A 1999 J. Appl. Phys. 85 2207
[4] Karazhanov S Zh 2001 J. Appl. Phys. 89 4030
[5] Beaucarne G, Brown A S, Keevers M J, Corkish R and Green M A 2002 Prog. Photovolt:Res. Appl. 10 345
[6] Khelifi S, Verschraegen J, Burgelman M and Belghachi A 2008 Renew. Energy 33 293
[7] Hu E T, Yue G Q, Zhang R J, Zheng Y X, Chen L Y and Wang S Y 2015 Renew. Energy 77 442
[8] Yuan J R, Huang H B, Deng X H, Liang X J, Zhou N G and Zhou L 2015 Chin. Phys. B 24 048501
[9] Güttler G and Queisser H J 1970 Energy Convers. 10 51
[10] Yuan J R, Shen H L, Huang H B and Deng X H 2011 J. Appl. Phys. 110 104508
[11] Burgelman M, Nollet P and Degrave S 2000 Thin Solid Films 361 527
[12] Burgelman M, Decock K, Khelifi S and Abass A 2013 Thin Solid Films 535 296
[13] Shockley W and Read W T 1952 Phys. Rev. 87 835
[14] Hall R N 1952 Phys. Rev. 87 387
[15] Sze S M and Ng K K 2007 Physics of Semiconductor Devices, 3rd ed. (New York:Wiley)
[16] Ilaiwi K F and Tomak M 1990 J. Phys. Chem. Solids 51 361
[17] Allen J W 1969 J. Phys. C:Solid State Phys. 2 1077
[18] Lucovsky G 1965 Solid State Commun. 3 299
[19] Schelter W, Hell W, Helbig R and Schulz M 1982 J. Phys. C:Solid State Phys. 15 5839
[20] Parker G J, Brotherton S D, Gale I and Gill A 1983 J. Appl. Phys. 54 3926
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[8] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[9] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[10] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[11] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[12] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[13] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!