Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016402    DOI: 10.1088/1674-1056/26/1/016402
Special Issue: TOPICAL REVIEW — Amorphous physics and materials
TOPICAL REVIEW—Amorphous physics and materials Prev   Next  

Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review

J C Qiao(乔吉超)1,2,3, Q Wang4, D Crespo5, Y Yang(杨勇)2, J M Pelletier3
1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2. Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China;
3. Universitéde Lyon, MATEIS, UMR CNRS5510, Bat. B. Pascal, INSA-Lyon, F-69621 Villeurbanne cedex, France;
4. Key Laboratory for Structures, Institute of Materials Science, Shanghai University, Shanghai 200444, China;
5. Departament de Física, EETAC, Universitat Politécnica de Catalunya, 08860-Castelldfels, Barcelona, Spain
Abstract  

Understanding mechanical relaxation, such as primary (α) and secondary (β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses. At a fundamental level, relaxation, plastic deformation, glass transition, and crystallization of metallic glasses are intimately linked to each other, which can be related to atomic packing, inter-atomic diffusion, and cooperative atom movement. Conceptually, β relaxation is usually associated with structural heterogeneities intrinsic to metallic glasses. However, the details of such structural heterogeneities, being masked by the meta-stable disordered long-range structure, are yet to be understood. In this paper, we briefly review the recent experimental and simulation results that were attempted to elucidate structural heterogeneities in metallic glasses within the framework of β relaxation. In particular, we will discuss the correlation among β relaxation, structural heterogeneity, and mechanical properties of metallic glasses.

Keywords:  metallic glass      structural heterogeneity      mechanical property      secondary relaxation  
Received:  17 September 2016      Revised:  22 November 2016      Accepted manuscript online: 
PACS:  64.70.pe (Metallic glasses)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51401192 and 51611130120), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM5009), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 3102015ZY027 and 3102015BJ(II)JGZ019), the Aeronautical Science Foundation of China (Grant No. 2015ZF53072). J C Qiao is also supported by the Hong Kong Scholar Program of China (Grant No. XJ2015056). D Crespo thanks the support of MINECO (Grant No. FIS2014-54734-P) and Generalitat de Catalunya (Grant No. 2014SGR00581). Y Yang is supported by the Research Grant Council, the Hong Kong City of China, through the General Research Fund (Grant No. CityU11214914).

Corresponding Authors:  J C Qiao, J M Pelletier     E-mail:  qjczy@hotmail.com;jean-marc.pelletier@insa-lyon.fr

Cite this article: 

J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review 2017 Chin. Phys. B 26 016402

[1] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[2] Anderson P W 1995 Science 2671615
[3] Inoue A 2000 Acta Mater. 48 279
[4] Wang W H 2012 Prog Mater Sci 57 487
[5] Johnson W L 2007 MRS Bull. 32 644
[6] Yu H B, Wang W H and Samwer K 2013 Mater. Today 16 183
[7] Qiao J C and Pelletier J M 2014 J. Mater. Sci. Technol. 30 523
[8] Lu Z, Jiao W, Wang W H and Bai H Y 2014 Phys. Rev. Lett. 113 045501
[9] Wang W H 2011 J. Appl. Phys. 110 053521
[10] Yu H B, Wang W H, Bai H Y and Samwer K 2014 National Sci. Rev. 1 429
[11] Qiao J C, Pelletier J M and Casalini R 2013 J. Phys. Chem. B 117 13658
[12] Angell C A, Ngai K L, McKenna G B, McMillan P F and Martin S W 2000 J. Appl. Phys. 86 3113
[13] Lunkenheimer P and Loid A 2002 Chem. Phys. 284 205
[14] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York:Springer)
[15] Nemilov S V and Balashov Y S 2016 Glass Phys. Chem. 42 119
[16] Liu C R, Pineda E and Crespo D 2015 J. Alloys Compd. 643 S17
[17] Qiao J C and Pelletier J M 2012 J. Appl. Phys. 112 033518
[18] Chen H S, Leamy H J and Barmatz M 1971 J. Non-Cryst. Solids 5 444
[19] Dutoit M and Chen H S 1973 Appl. Phys. Lett. 23 357
[20] Yoon H N and Eisenberg A 1978 J. Non-Cryst. Solids 29 357
[21] Kunzi H U, Agyeman K and Guntherodt H J 1979 Solid State Commun. 32 711
[22] Morito N and Egami T 1984 Acta metal. 32 603
[23] Inoue A, Zhang T and Masumoto T 1989 Mater. Trans. JIM 30 965
[24] Inoue A, Zhang T and Masumoto T 1990 Mater. Trans. JIM 31 177
[25] Peker A and Johnson W L 1993 Appl. Phys. Lett. 63 2342
[26] Okumura H, Chen H S, Inoue A and Masumoto T 1991 J. Non-Cryst. Solids 130 304
[27] Okumura H, Inoue A and Masumoto T 1991 Mater. Trans. JIM 32 593
[28] Okumura H, Inoue A and Masumoto T 1993 Acta Metall. Mater. 41 915
[29] Perera D N and Tsai A P 1999 J. Phys.:Condens. Matter 11 3029
[30] Perera D N and Tsai A P 1999 J. Phys.:Appl. Phys. 32 2933
[31] Pelletier J M, Van de Moortéle B and Lu I R 2002 Mater. Sci. Eng. A 336 190
[32] Qiao J C and Pelletier J M 2012 J. Appl. Phys. 112 083528
[33] Arbe A, Richter D, Colmenero J and Farago B 1996 Phys. Rev. E 54 3853
[34] Kissinger K E 1957 Anal. Chem. 29 1702
[35] Ngai K L and Capaccioli S 2004 Phys. Rev. E 69 031501
[36] Yu H B, Wang W H, Bai H Y, Wu Y and Chen M W 2010 Phys. Rev. B 81 220201
[37] Xue R J, Zhao L Z, Zhang B, Bai H Y, Wang W H and Pan M X 2015 Appl. Phys. Lett. 107 241902
[38] Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y and Wang W H 2015 Appl. Phys. Lett. 106 031907
[39] Rösner P, Samwer K and Lunkenheimer P 2004 Europhys. Lett. 68 226
[40] Ngai K L 2006 J. Non-Cryst. Solids 352 404
[41] Zhao Z F, Wen P, Shek C H and Wang W H 2007 Phys. Rev. B 75 174201
[42] Qiao J C, Casalini R, Pelletier J M and Yao Y 2016 J. Non-Cryst. Solids 447 85
[43] Sun Q J, Hu L N, Zhou C, Zheng H J and Yue Y Z 2015 J. Chem. Phys. 143 164504
[44] Zhu Z G, Li Y Z, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K L and Wang W H 2014 J. Chem. Phys. 141 084506
[45] Qiao J C, Yao Y, Pelletier J M and Keer L M 2016 Inter. J. Plast. 82 62
[46] Yu H B, Samwer K, Wang W H and Bai HY 2013 Nat. Commun. 4 2204
[47] Qiao J C, Casalini R and Pelletier J M 2014 J. Phys. Chem. B 118 3720
[48] Qiao J C, Wang Y J, Pelletier J M, Keer L M, Fine M E and Yao Y 2015 Acta Mater. 98 43
[49] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A and Greer A L 2015 Nature 524 7564
[50] Qiao J C, Pelletier J M, Kou H C and Zhou X 2012 Intermetallics 28 128
[51] Stevenson J D and Wolynes P G 2010 Nat. Phys. 6 62
[52] Williams G and Watts D C 1971 Trans. Faraday Soc. 67 1971
[53] Johari G P and Goldstein M 1970 J. Chem. Phys. 53 2372
[54] Johari G P and Goldstein M 1971 J. Chem. Phys. 55 4245
[55] Johari G P 2002 J. Non-Cryst. Solids 307 317
[56] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J and Anazawa K 2005 Phys. Rev. Lett. 95 245501
[57] Kob W, Roldan-Vargas S and Berthier L 2012 Nat. Phys. 8 164
[58] Donati C, Glotzer S C and Poole P H 1999 Phys. Rev. Lett. 82 5064
[59] Qiu X H and Ediger M D 2003 J. Phys. Chem. 107 459
[60] Berthier L, Biroli G, Bouchaud J P, Cipelletti L, El Masri D, L'Hôte D, Ladieu F and Pierno M 2005 Science 310 1797
[61] Wei S, Gallino I, Busch R and Angell C A 2011 Nat. Phys. 7 178
[62] Berthier L, Biroli G, Bouchaud J P, Cipelletti L, EI Masri, L'Hote D, Ladieu F and Piemo M 2005 Science 310 1797
[63] Berthier L, Biroli G, Bouchaud J P, Kob W, Miyazaki K and Reichman D R 2007 J. Chem. Phys. 126 184503
[64] Tanaka H, Kawasaki T, Shintani H and Watanabe K 2010 Nat. Mater. 9 324
[65] Adam G and Gibbs J 1965 J. Chem. Phys. 43 139
[66] Dyre J C 2006 Rev. Mod. Phys. 78 953
[67] Toninelli C, Wyart M, Berthier L, Biroli G and Bouchard J P 2005 Phys. Rev. E 71 041505
[68] Harmon J S, Demetriou M D, Johnson W L and Samwer K 2007 Phys. Rev. Lett. 99 135502
[69] Biroli G, Bouchaud J P, Cavagna A, Grigera T S and Verrocchio P 2008 Nat. Phys. 4 771
[70] Perez J, Cavaillé J Y, Etienne S, Fouquet F and Guyot F 1983 Ann. Phys. 8 417
[71] Ngai K L, Wang Z, Gao X Q, Yu H B and Wang W H 2013 J. Chem. Phys. 139 014502
[72] Wang Z, Ngai K L, Wang W H and Capaccioli S 2016 J. Appl. Phys. 119 024902
[73] Hu Y C, Guan P F, Li M Z, Liu C T, Yang Y, Bai H Y and Wang W H 2016 Phys. Rev. B 93 214202
[74] Wang Z, Sun B A, Bai H Y and Wang W H 2014 Nat. Commun. 5 5823
[75] Liu S T, Wang Z, Peng H L, Yu H B and Wang W H 2012 Scripta Mater. 67 9
[76] Liu S T, Jiao W, Sun B A and Wang W H 2013 J. Non-Cryst. Solids 376 76
[77] Hu L N and Yue Y Z 2009 J. Phys. Chem. C 113 15001
[78] Lee J C 2014 Intermetallics 44 116
[79] Hu L N and Yue Y Z 2008 J. Phys. Chem. B 112 9053
[80] Sun Q J, Zhou C, Yue Y Z and Hu L N 2014 J. Phys. Chem. Lett. 5 1170
[81] Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241
[82] Barmatz M and Chen H S 1974 Phys. Rev. B 9 4073
[83] Meyer A, Wuttke J and Petry W 1999 J. Non-Cryst. Solids 250 116
[84] Zhao Z F, Wen P and Wang W H 2006 Appl. Phys. Lett. 89 071920
[85] Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T and Lu J 2015 Nat. Commun. 6 7876
[86] Zhao L Z, Xue R J, Zhu Z G, Ngai K L, Wang W H and Bai H Y 2016 J. Chem. Phys. 144 204507
[87] Kato H, Ichitsubo T, Wang H and Wada T 2013 J. Jpn. Soc. Powder Metall. 60 228
[88] Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L and Satija S 2007 Science 315 353
[89] Leon-Gutierrez E, Sepulveda A, Garcia G, Clavaguera-Mora M T and Rodriguez-Viejo J 2010 Phys. Chem. Chem. Phys. 12 14693
[90] Dalal S S, Sepulveda A, Pribil G K, Fakhraai Z and Ediger M D 2012 J. Chem. Phys. 136 204501
[91] Singh S, Ediger M D and de Pablo J J 2013 Nat. Mater. 12 139
[92] Sepulveda A, Tylinski M, Guiseppi-Elie A, Richert R and Ediger M D 2014 Phys. Rev. Lett. 113 045901
[93] Yu H B, Luo Y S and Samwer K 2013 Adv. Mater. 25 5904
[94] Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M D and Richert R 2015 Phys. Rev. Lett. 115 185501
[95] Perez-Castaneda T, Rodriguez-Tinoco C, Rodriguez-Viejo J and Ramos M A 2014 Proc. Natl. Acad. Sci. USA 111 11275
[96] Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T and Wang W H 2016 Acta Mater. 110 73
[97] Yu H B, Samwer K, Wu Y and Wang W H 2012 Phys. Rev. Lett. 109 095508
[98] Liu Y H, Fujita T, Aji D P B, Matsuura M and Chen M W 2014 Nat. Commun. 5 3238
[99] Zhu F, Naguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K and Chen M W 2016 Nat. Commun. 7 11516
[100] Ngai K L 1998 Phys. Rev. E 57 7346
[101] Hu L N, Zhang C Z and Yue Y Z 2010 Appl. Phys. Lett. 96 221908
[102] Qiao J C, Pelletier J M, Blandin J J and Gravier S 2013 Mater. Sci. Eng. A 586 57
[103] Boyer R F 1968 Polym. Eng. Sci. 8 161
[104] Chen L P, Yee A F and Moskala E J 1999 Macromolecules 32 5944
[105] Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T and Chem M W 2009 Phys. Rev. Lett. 103 065504
[106] Liu Z Y, Wang G, Chan K C, Ren J L, Huang Y J, Bian X L, Xu X H, Zhang D S, Gao Y L and Zhai Q J 2013 J. Appl. Phys 114 033520
[107] Liu Z Y, Wang G, Chan K C, Ren J L, Huang Y J, Bian X L, Xu X H, Zhang D S, Gao Y L and Zhai Q J 2013 J. Appl. Phys 114 033521
[108] Tokunaga H, Fujita K and Yokoyama Y 2012 Mater. Trans. 53 1395
[109] Pan D, Guo H, Zhang W, Inoue A and Chem M W 2011 Appl. Phys. Lett. 99 241907
[110] Yoon K S, Lee M, Fleury E and Lee J C 2010 Acta Mater. 58 5295
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[4] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[5] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[6] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[7] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[8] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[9] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[10] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[11] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[12] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[13] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[14] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[15] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
No Suggested Reading articles found!