Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016401    DOI: 10.1088/1674-1056/26/1/016401
Special Issue: TOPICAL REVIEW — Amorphous physics and materials
TOPICAL REVIEW—Amorphous physics and materials Prev   Next  

Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

V A Khonik
Department of General Physics, State Pedagogical University, Voronezh 394043, Russia
Abstract  

A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching.

Keywords:  liquids and glasses      interstitialcy theory      shear modulus      relaxation  
Received:  31 August 2016      Revised:  06 October 2016      Accepted manuscript online: 
PACS:  64.70.pe (Metallic glasses)  
  61.72.jj (Interstitials)  
  62.20.de (Elastic moduli)  
Fund: 

Project supported by the Ministry of Education and Science of the Russian Federation (Grant No. 3.114.2014/K).

Corresponding Authors:  V A Khonik     E-mail:  khonik@vspu.ac.ru

Cite this article: 

V A Khonik Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials 2017 Chin. Phys. B 26 016401

[1] Elliott S R 1984 Physics of Amorphous Materials (New York:Longman)
[2] Jäckle J 1986 Rep. Prog. Phys. 49 171
[3] Nemilov S V 1995 Thermodynamic and Kinetic Aspects of the Vitreous State (Boca Raton:CRC Press)
[4] Zallen R 1998 The Physics of Amorphous Solids (New York, Chichester, Weinheim, Brisbane, Singapore, Toronto:John Wiley & Sons)
[5] Donth E 2001 The Glass Transition:Relaxation Dynamics in Liquids and Disordered Materials (Berlin, Heidelberg, New York:Springer-Verlag)
[6] Rao K J 2002 Structural Chemistry of Glasses (Elsevier Science & Technology Books)
[7] Dyre J C 2006 Rev. Mod. Phys. 78 953
[8] Angell C A 2008 MRS Bull. 33 544
[9] Schmelzer J W P and Gutzow I S 2011 Glasses and the Glass Transition (Weinheim:Wiley-VCH)
[10] Wolynes P G and Lubchenko V 2012 Structural Glasses and Superccoled liquids. Theory, Experiment, and Applications (Hoboken, New Jersey:John Wiley & Sons)
[11] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[12] Inoue A and Takeuchi A 2007 Acta Mater. 59 2243
[13] Trexler M M and Thadhani N N 2010 Prog. Mater. Sci. 55 759
[14] Wang W H 2012 Prog. Mater. Sci. 57 487
[15] Egami T, Iwashita T and Dmowski W 2013 Metals 3 77
[16] Yu H B, Wang W H and Samwer K 2013 Mater. Today 16 183
[17] Greer A L 2014 Metallic Glasses. In Physical Metallurgy, vol. I, (Ed. Laughlin D E, Hono K) (Oxford, UK:Elsevier) pp. 305-385
[18] Johnson W L 2015 Nature 14 553
[19] Liu C, Pineda E and Crespo D 2015 Metals 5 1073
[20] Ma E 2015 Nat. Mater. 14 547
[21] Sun B A and Wang W H 2015 Prog. Mater. Sci. 74 211
[22] Garrett G R, Demetriou M D, Launey M E and Johnson W L 2016 Proc. Nat. Acad. Sci. 113 10257
[23] Wang W H, Yang Y, Nieh T G and Liu C T 2015 Intermetallics 67 81
[24] Langer J C 2007 Physics Today 60 9
[25] Egami T 2010 JOM 62 70
[26] Frenkel J 1926 Z. Phys. 35 652
[27] Frenkel J 1937 Trans. Faraday Soc. 33 58
[28] Frenkel J 1946 Kinetic Theory of Liquids (New York:Oxford University Press)
[29] van Bueren H G 1961 Imperfections in Crystals (Amsterdam:North-Holland)
[30] Damask A C and Dienes G J 1963 Point Defects in Metals London:Gordon and Breach
[31] Seitz F 1950 Acta Crystallogr. 3 355
[32] Gibson J B, Goland A N, Milgram M and Vineyard G H 1960 Phys. Rev. 120 1229
[33] Erginsoy C, Vineyard G H and Englert A 1964 Phys. Rev. 133 A595
[34] Schilling W 1978 J. Nucl. Mater. 69 465
[35] Young F W Jr 1978 J. Nucl. Mater. 69 310
[36] Ehrhart P, Robrock K H, Schober H R 1986 Physics of Radiation Effects in Crystals (Ed. R A Johnson, A N Orlov) Elsevier Science Publishers pp. 3-115
[37] Robrock K H 1990 Mechanical Relaxation of Interstitials in Irradiated Metals (Berlin:Springer-Verlag)
[38] Schilling W 1994 J. Nucl. Mater. 216 45
[39] Wolfer W G 2012 Fundamental Properties of Defects in Metals. In Comprehensive Nuclear Materials (Ed. R J M Konings) Amsterdam:Elsevier
[40] Haubold H G and Martinsen D 1978 J. Nucl. Mater. 69 644
[41] Ehrhart P 1991 Atomic Defects in Metals Landolt-Börnstein New Series III, vol. 25(Ed. H Ullmaier) Berlin:Springer p. 88
[42] Morgenstern M and Michely T 1997 Phys. Rev. Lett. 79 1305
[43] Granato A V 1993 J. Non-Cryst. Sol. 156 402
[44] Kraftmakher Y 2000 Lecture Notes on Equilibrium Point Defects and Thermophysical Properties of Metals Singapore:World Scientific
[45] Simmons R O and Balluffi R W 1960 Phys. Rev. 117 52
[46] Simmons R O and Balluffi R W 1963 Phys. Rev. 129 1533
[47] Gottstein G 2004 Physical Foundations of Materials Science (Berlin:Springer)
[48] Holder J, Granato A V and Rehn L E 1974 Phys. Rev. Lett. 32 1054
[49] Holder J, Granato A V and Rehn L E 1974 Phys. Rev. 10 363
[50] Rehn L E, Holder J, Granato A V, Coltman R R and Young F W Jr 1974 Phys. Rev. 10 349
[51] Robrock K H and Schilling W 1976 J. Phys. F:Met. Phys. 6 303
[52] Gordon C A and Granato A V 2004 Mater. Sci. Eng. A 370 83
[53] Born M 1939 J. Chem. Phys. 7 591
[54] Dederichs P H, Lehman C and Scholz A 1973 Phys. Rev. Lett. 31 1130
[55] Dederichs P H, Lehman C, Schober H R, Scholz A and Zeller R 1978 J. Nucl. Mater. 69 176
[56] Nordlund K and Averback R S 1998 Phys. Rev. Lett. 80 4201
[57] Safonova E V, Mitrofanov Yu P, Konchakov, Vinogradov A Yu, Kobelev N P and Khonik V A 2016 J. Phys.:Condens. Matter 28 215401
[58] Granato A V 1992 Phys. Rev. Lett. 68 974
[59] Granato A V 2014 Eur. J. Phys. 87 18
[60] Dyre J C 2007 Phys. Rev. B 75 092102
[61] Gordon C A, Granato A V and Simmons R O 1996 J. Non-Cryst. Sol. 205 216
[62] Granato A V 2002 J. Non-Cryst. Sol. 307 376
[63] Granato A V 2006 J. Non-Cryst. Sol. 352 4821
[64] Nordlund K, Ashkenazy Y, Averback R S and Granato A V 2005 Europhys. Lett. 71 625
[65] Forsblom M and Grimvall G 2005 Nature Mater. 4 388
[66] Stillinger F H and Weber T A 1984 J. Chem. Phys. 81 5095
[67] Lee G C S and Li J C M 1989 Phys. Rev. B 39 9302
[68] Kanigel A, Adler J and Polturak E 2001 Int. J. Mod. Phys. C 12 727
[69] Zhang H, Khalkhali M, Liu Q and Douglas J F 2013 J. Chem. Phys. 138 12A538
[70] Granato A V, Joncich D M and Khonik V A 2010 Appl. Phys. Lett. 97 171911
[71] Granato A V 2011 J. Non-Cryst. Sol. 357 334
[72] Safonova E V, Konchakov R A, Mitrofanov Yu P, Vinogradov A Yu and Khonik V A 2016 J. Exp. Theor. Phys. Lett. 103 765
[73] Khonik V A 2015 Metals 5 504
[74] Granato A V 2009 Mater. Sci. Eng. A 521 6
[75] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99128
[76] Betancourt B A P, Douglas J F and Starr F W 2014 J. Chem. Phys. 140 204509
[77] Donati C, Douglas J F, Kob W, Plimpton S J, Poole P H and Glotzer S C 1998 Phys. Rev. Lett. 80 2338
[78] Oligschleger C and Schober H R 1999 Phys. Rev. B 59 811
[79] Schober H R 2002 J. Non Cryst. Sol. 307 40
[80] Konchakov R A and Khonik V A 2014 Phys. Solid State 56 1368
[81] Konchakov R A, Khonik V A and Kobelev N P 2015 Phys. Solid State 57 856
[82] Konchakov R A, Khonik V A, Kobelev N P and Makarov A S 2016 Phys. Solid State 58 215
[83] Gibbs M R J, Evetts J E and Leake J A 1983 J. Mater. Sci. 18 278
[84] Khonik V A 2000 Phys. Stat. Sol. 177 173
[85] Khonik V A, Kitagawa K and Morii H 2000 J. Appl, Phys. 87 8440
[86] Khonik S V, Granato A V, Joncich D M, Pompe A and Khonik V A 2008 Phys. Rev. Lett. 100 065501
[87] Bothe K and Neuhäuser H 1983 J. Non-Cryst. Sol. 56 279
[88] Mitrofanov Yu P, Khonik V A and Vasil'ev A N 2009 J. Exp. Theor. Phys. 108 830
[89] Makarov A S, Khonik V A, Mitrofanov Yu P, Granato A V, Joncich D M and Khonik S V 2013 Appl. Phys. Lett. 102 091908
[90] Mitrofanov Yu P, Wang D P, Wang W H and Khonik V A 2016 J. Alloys Comp. 677 80
[91] Mitrofanov Yu P, Khonik V A, Granato A V, Joncich D M, Khonik S V and Khoviv A M 2012 Appl. Phys. Lett. 100 171901
[92] Khonik V A, Mitrofanov Yu P, Makarov A S, Konchakov R A, Afonin G V and Tsyplakov A N 2015 J. Alloys Comp. 628 27
[93] Kobelev N P, Khonik V A, Makarov A S, Afonin G V and Mitrofanov Yu P 2014 J. Appl. Phys. 115 033513
[94] Makarov A S, Khonik V A, Wilde G, Mitrofanov Yu P and Khonik S V 2014 Intermetallics 44 106
[95] Mitrofanov Yu P, Khonik V A, Granato A V, Joncich D M and Khonik S V 2011 J. Appl. Phys. 109 073518
[96] Makarov A S, Mitrofanov Yu P, Afonin G V, Khonik V A and Kobelev N P 2015 Phys. Sol. State 57 978
[97] Kahl A, Koeppe T, Bedorf D, Richert R, Lind M L, Demetriou M D, Johnson W L, Arnold W and Samwer K 2009 Appl. Phys. Lett. 95 201903
[98] Makarov A S, Khonik V A, Mitrofanov Yu P and Tsyplakov A N 2016 Intermetallics 69 10
[99] Mitrofanov Yu P, Makarov A S, Khonik V A, Granato A V, Joncich D M and Khonik S V 2012 Appl. Phys. Lett. 101 131903
[100] Kobelev N P and Khonik V A 2015 J. Non-Cryst. Sol. 427 184
[101] Makarov A S, Khonik V A, Mitrofanov Yu P, Granato A V and Joncich D M 2013 J. Non-Cryst. Solids 370 18
[102] Tsyplakov A N, Mitrofanov Yu P, Khonik V A, Kobelev N P and Kaloyan A A 2015 J. Alloys Comp. 618 449
[103] Mitrofanov Yu P, Wang D P, Makarov A S, Wang W H and Khonik V A 2016 Sci. Rep. 6 23026
[104] Kobelev N P, Khonik V A, Afonin G V and Kolyvanov E L 2015 J. Non-Cryst. Sol. 411 1
[105] Afonin G V, Mitrofanov Yu P, Makarov A S, Kobelev N P, Wang W H and Khonik V A 2016 Acta Mater. 115 204
[106] Tsyplakov A N, Mitrofanov Yu P, Makarov A S, Afonin G V and Khonik V A 2014 J. Appl. Phys. 116 123507
[107] Khonik V A and Kobelev N P 2014 J. Appl. Phys. 115 093510
[108] Mitrofanov Yu P, Csach K, Juríková, Miškuf J, Wang W H and Khonik V A 2016 J. Non-Cryst. Sol. 448 31
[109] Vasiliev A N, Voloshok T N, Granato A V, Joncich D M, Mitrofanov Yu P and Khonik V A 2009 Phys. Rev. B 80 172102
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[3] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[7] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[8] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[9] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[10] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[11] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[12] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[13] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[14] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[15] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
No Suggested Reading articles found!