Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014203    DOI: 10.1088/1674-1056/26/1/014203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis

Yi-Yang Xie(解意洋)1,2, Qiang Kan(阚强)2, Chen Xu(徐晨)1, Kun Xu(许坤)3, Hong-Da Chen(陈弘达)2
1. Key Laboratory of Optoelectronics Technology(Ministry of Education), Beijing University of Technology, Beijing 100124, China;
2. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China;
3. Zhengzhou University of Aeronautics, Zhengzhou 450046, China
Abstract  The characteristics of the photonic crystal vertical cavity surface emitting lasers (PhC-VCSELs) were investigated by using the full vector finite-difference time-domain (FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.
Keywords:  vertical cavity surface emitting lasers      single fundamental mode      mode loss  
Received:  09 May 2016      Revised:  18 September 2016      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934104, 2009CB320300, and 2011CBA00608) and the National Natural Foundation of China (Grant Nos. 61604007, 61378058, 61376049, 61575008, and 61574011).
Corresponding Authors:  Chen Xu     E-mail:  xuchen58@bjut.edu.cn

Cite this article: 

Yi-Yang Xie(解意洋), Qiang Kan(阚强), Chen Xu(徐晨), Kun Xu(许坤), Hong-Da Chen(陈弘达) Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis 2017 Chin. Phys. B 26 014203

[1] Iga K 2000 IEEE J. Sel. Topics Quantum Electron. 6 1201
[2] Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 1077-260X 1
[3] Jung C, Jäger R, Grabherr M, Schnitzer P, Michalzik R, Weigl B, Müller S and Ebeling K J 1997 Electron. Lett. 33 1790
[4] Wang W J, Li C, Zhou H Y, Wu H, Luan X X, Shi L and Guo X 2015 Chin. Phys. B 24 024209
[5] Guan B L, Liu X, Jiang X W, Liu C and Xu C 2015 Acta Phys. Sin. 64 164203(in Chinese)
[6] Kroner A, Rinaldi F, Ostermann J M and Michalzik R 2007 Opt. Commun. 270 332
[7] Shi J W, Chen C C, Wu Y S, Guol S H, Kuo C and Yang Y J 2008 IEEE Photon. Technol. Lett. 20 1121
[8] Unold H J, Riedl M C, Mahmoud S W Z, Jäger R and Ebeling K J 2001 Electron. Lett. 37 178
[9] Zhao Z B, Xu C, Xie Y Y, Zhou K, Liu F and Shen G D 2012 Chin. Phys. B 21 034206
[10] Song D S, Kim S H, Park H G, Kim C K and Lee Y H 2002 Appl. Phys. Lett. 80 3901
[11] Danner A J, Raftery J J, Leisher P O and Choquette K D 2006 Appl. Phys. Lett. 88 1114
[12] Chen C, Leisher P O, Kuchta D M, and Choquette K D 2009 IEEE J. Sel. Top. Quantum Electron 15 673
[13] Xie Y Y, Xu C, Kan Q, Wang C X and Chen H D 2013 Optics & Laser Technology 50 130
[14] Xie Y Y, Xu C, Kan Q, Wang C X, Liu Y M, Wang B Q, Chen H D and Shen G D 2010 Chin. Phys. Lett. 27 0242061
[15] Yokouchi N, Danner A J and Choquette K D 2003 IEEE J. Sel. Top. Quantum Electron. 9 1439
[16] Danner A J, Raftery J J Jr, Yokouchi N and Choquette K D 2004 Appl. Phys. Lett. 84 1031
[17] Xie Y Y, Xu C, Kan Q, Xun M, Xu K and Chen H D 2015 Opt. Mater. Express 5 1998
[18] Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 3608
[19] Yang H P D, Lai F I, Chang Y H, Yu H C, Sung C P, Kuo H C, Wang S C, Lin S Y and Chi J Y 2005 Electron. Lett. 41 326
[20] Leisher P O, Danner A J and Choquette K D 2006 IEEE Photon. Technol. Lett. 18 2156
[21] Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 1344
[22] Alias M S and Shaari S 2010 Appl. Phys. B 100 4340
[23] Danner A J, Raftery J J, Kim T and Leisher P O 2005 IEICE Trans. Electron. E88-C 5 944
[24] Liu A, Xing M, Qu H, Chen W, Zhou W and Zheng W 2009 Appl. Phys. Lett. 94 1911051
[25] Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M and Chen H D 2013 Chin. Phys. B 22 024205
[26] Xie Y Y, Kan Q, Xu C, Zhu Y X, Wang C X and Chen H D 2012 IEEE Photon. Technol. Lett. 24 464
[27] Alias M S and Shaari S 2010 IEEE J. Lightw. Technol. 28 1556
[28] Alias M S, Shaari S, Leisher P O and Choquette K D 2010 Appl. Phys. B 100 453
[29] Dems M, Chung I S, Nyakas P, Bischoff S and Panajotov K 2010 Opt. Express 18 16042
[30] Jo D H, Vu N H, Kim J T and Hwang I K 2011 Opt. Express 19 18272
[31] Park H G, Hwang J K, Huh J, Ryu H Y, Kim S H, Kim J S and Lee Y H 2002 IEEE J. Quantum Electron. 38 1353
[32] Zhang Y, Khan M, Huang Y, Ryou J, Deotare P, Dupuis R and Lončar M 2010 Appl. Phys. Lett. 97 0511041
[33] Nyakas P 2007 IEEE J. Lightw. Technol. 25 2427
[34] Czyszanowski T 2010 Opto.Electron. Rev. 18 56
[35] Czyszanowski T, Dems M, Sarzala R P, Nakwaski W and Panajotov K 2011 IEEE J. Quantum Electron. 47 1291
[36] Siriani D F, Leisher P O and Choquette K D 2009 IEEE J. Quantum Electron. 45 762
[37] Czyszanowski T, Dems M, Thienpont H and Panajotov K 2007 Opt. Express 15 1301
[38] Gehrsitz S, Reinhart F K, Gourgon C, Herres N, Vonlanthen A and Sigg H 2000 J. Appl. Phys. 87 7825
[39] Adachi S 1982 J. Appl. Phys. 53 5863
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[13] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
No Suggested Reading articles found!