ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis |
Yi-Yang Xie(解意洋)1,2, Qiang Kan(阚强)2, Chen Xu(徐晨)1, Kun Xu(许坤)3, Hong-Da Chen(陈弘达)2 |
1. Key Laboratory of Optoelectronics Technology(Ministry of Education), Beijing University of Technology, Beijing 100124, China; 2. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; 3. Zhengzhou University of Aeronautics, Zhengzhou 450046, China |
|
|
Abstract The characteristics of the photonic crystal vertical cavity surface emitting lasers (PhC-VCSELs) were investigated by using the full vector finite-difference time-domain (FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.
|
Received: 09 May 2016
Revised: 18 September 2016
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934104, 2009CB320300, and 2011CBA00608) and the National Natural Foundation of China (Grant Nos. 61604007, 61378058, 61376049, 61575008, and 61574011). |
Corresponding Authors:
Chen Xu
E-mail: xuchen58@bjut.edu.cn
|
Cite this article:
Yi-Yang Xie(解意洋), Qiang Kan(阚强), Chen Xu(徐晨), Kun Xu(许坤), Hong-Da Chen(陈弘达) Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis 2017 Chin. Phys. B 26 014203
|
[1] |
Iga K 2000 IEEE J. Sel. Topics Quantum Electron. 6 1201
|
[2] |
Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 1077-260X 1
|
[3] |
Jung C, Jäger R, Grabherr M, Schnitzer P, Michalzik R, Weigl B, Müller S and Ebeling K J 1997 Electron. Lett. 33 1790
|
[4] |
Wang W J, Li C, Zhou H Y, Wu H, Luan X X, Shi L and Guo X 2015 Chin. Phys. B 24 024209
|
[5] |
Guan B L, Liu X, Jiang X W, Liu C and Xu C 2015 Acta Phys. Sin. 64 164203(in Chinese)
|
[6] |
Kroner A, Rinaldi F, Ostermann J M and Michalzik R 2007 Opt. Commun. 270 332
|
[7] |
Shi J W, Chen C C, Wu Y S, Guol S H, Kuo C and Yang Y J 2008 IEEE Photon. Technol. Lett. 20 1121
|
[8] |
Unold H J, Riedl M C, Mahmoud S W Z, Jäger R and Ebeling K J 2001 Electron. Lett. 37 178
|
[9] |
Zhao Z B, Xu C, Xie Y Y, Zhou K, Liu F and Shen G D 2012 Chin. Phys. B 21 034206
|
[10] |
Song D S, Kim S H, Park H G, Kim C K and Lee Y H 2002 Appl. Phys. Lett. 80 3901
|
[11] |
Danner A J, Raftery J J, Leisher P O and Choquette K D 2006 Appl. Phys. Lett. 88 1114
|
[12] |
Chen C, Leisher P O, Kuchta D M, and Choquette K D 2009 IEEE J. Sel. Top. Quantum Electron 15 673
|
[13] |
Xie Y Y, Xu C, Kan Q, Wang C X and Chen H D 2013 Optics & Laser Technology 50 130
|
[14] |
Xie Y Y, Xu C, Kan Q, Wang C X, Liu Y M, Wang B Q, Chen H D and Shen G D 2010 Chin. Phys. Lett. 27 0242061
|
[15] |
Yokouchi N, Danner A J and Choquette K D 2003 IEEE J. Sel. Top. Quantum Electron. 9 1439
|
[16] |
Danner A J, Raftery J J Jr, Yokouchi N and Choquette K D 2004 Appl. Phys. Lett. 84 1031
|
[17] |
Xie Y Y, Xu C, Kan Q, Xun M, Xu K and Chen H D 2015 Opt. Mater. Express 5 1998
|
[18] |
Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 3608
|
[19] |
Yang H P D, Lai F I, Chang Y H, Yu H C, Sung C P, Kuo H C, Wang S C, Lin S Y and Chi J Y 2005 Electron. Lett. 41 326
|
[20] |
Leisher P O, Danner A J and Choquette K D 2006 IEEE Photon. Technol. Lett. 18 2156
|
[21] |
Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 1344
|
[22] |
Alias M S and Shaari S 2010 Appl. Phys. B 100 4340
|
[23] |
Danner A J, Raftery J J, Kim T and Leisher P O 2005 IEICE Trans. Electron. E88-C 5 944
|
[24] |
Liu A, Xing M, Qu H, Chen W, Zhou W and Zheng W 2009 Appl. Phys. Lett. 94 1911051
|
[25] |
Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M and Chen H D 2013 Chin. Phys. B 22 024205
|
[26] |
Xie Y Y, Kan Q, Xu C, Zhu Y X, Wang C X and Chen H D 2012 IEEE Photon. Technol. Lett. 24 464
|
[27] |
Alias M S and Shaari S 2010 IEEE J. Lightw. Technol. 28 1556
|
[28] |
Alias M S, Shaari S, Leisher P O and Choquette K D 2010 Appl. Phys. B 100 453
|
[29] |
Dems M, Chung I S, Nyakas P, Bischoff S and Panajotov K 2010 Opt. Express 18 16042
|
[30] |
Jo D H, Vu N H, Kim J T and Hwang I K 2011 Opt. Express 19 18272
|
[31] |
Park H G, Hwang J K, Huh J, Ryu H Y, Kim S H, Kim J S and Lee Y H 2002 IEEE J. Quantum Electron. 38 1353
|
[32] |
Zhang Y, Khan M, Huang Y, Ryou J, Deotare P, Dupuis R and Lončar M 2010 Appl. Phys. Lett. 97 0511041
|
[33] |
Nyakas P 2007 IEEE J. Lightw. Technol. 25 2427
|
[34] |
Czyszanowski T 2010 Opto.Electron. Rev. 18 56
|
[35] |
Czyszanowski T, Dems M, Sarzala R P, Nakwaski W and Panajotov K 2011 IEEE J. Quantum Electron. 47 1291
|
[36] |
Siriani D F, Leisher P O and Choquette K D 2009 IEEE J. Quantum Electron. 45 762
|
[37] |
Czyszanowski T, Dems M, Thienpont H and Panajotov K 2007 Opt. Express 15 1301
|
[38] |
Gehrsitz S, Reinhart F K, Gourgon C, Herres N, Vonlanthen A and Sigg H 2000 J. Appl. Phys. 87 7825
|
[39] |
Adachi S 1982 J. Appl. Phys. 53 5863
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|