ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A single-longitudinal-mode continuous-wave Ho3+: YVO4 laser at 2.05 μm pumped by a Tm-fibre laser |
Jing Wu(吴婧), Youlun Ju(鞠有伦), Zhenguo Zhang(张振国), Liwei Xu(徐丽伟), Tongyu Dai(戴通宇), Baoquan Yao(姚宝权), Yuezhu Wang(王月珠) |
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract We present a single-longitudinal-mode continuous-wave Ho3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power achieved in the single longitudinal mode at 2052.5 nm is 282 mW at a slope efficiency of 6.9%, corresponding to an optical conversion efficiency of 3.0%. These features demonstrate that this single-longitudinal-mode Ho:YVO4 laser is suitable for use as a seed laser in some Lidar systems (e.g., coherent Lidar or differential absorption Lidar). To the best of our knowledge, this is the first report on such a single-longitudinal-mode Ho:YVO4 laser at 2.05 μm.
|
Received: 24 July 2016
Revised: 06 October 2016
Accepted manuscript online:
|
PACS:
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308009 and 61405047), the China Postdoctoral Science Foundation (Grant Nos. 2016T90287 and 2015M570290), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT.NSRIF.2015042), and the Postdoctoral Science Foundation of Heilongjiang Province, China (Grant No. LBH-Z14085). |
Corresponding Authors:
Tongyu Dai
E-mail: daitongyu2006@126.com
|
Cite this article:
Jing Wu(吴婧), Youlun Ju(鞠有伦), Zhenguo Zhang(张振国), Liwei Xu(徐丽伟), Tongyu Dai(戴通宇), Baoquan Yao(姚宝权), Yuezhu Wang(王月珠) A single-longitudinal-mode continuous-wave Ho3+: YVO4 laser at 2.05 μm pumped by a Tm-fibre laser 2017 Chin. Phys. B 26 014204
|
[1] |
Wu C T, Ju Y L, Wang Q, Wang Z G, Yao B Q and Wang Y Z 2011 Opt. Commun. 284 994
|
[2] |
Wang L, Gao C Q, Gao M W, Li Y, Yue F Y and Liu L 2014 Opt. Eng. 53 061603
|
[3] |
Li J, Yang S H, Zhao C M, Zhang H Y and Wang Y 2011 Appl. Opt. 50 1329
|
[4] |
Zhang C H, Yao B Q, Li G, Wang Q, Ju Y L and Wang Y Z 2010 Laser Phys. 20 1564
|
[5] |
Nagasawa C, Suzuki T, Nakajima H, Hara H and Mizutani K 2001 Opt. Commun. 200 315
|
[6] |
Li J, Yang S H, Zhao C M, Zhang H Y and Xie W 2010 Opt. Express 18 12161
|
[7] |
Song B A, Zhang W J, Ren D M, Qu Y C, Zhang H Y, Qian L M and Hu X Y 2009 Chin. Opt. Lett. 7 805
|
[8] |
Ju Y L, Liu W, Yao B Q, Dai T Y, Wu J, Yuan J H, Wang J, Duan X M and Wang Y Z 2015 Chin. Opt. Lett. 13 111403
|
[9] |
Scholle K, Heumann E and Huber G 2004 Laser Phys. Lett. 1 285
|
[10] |
Yao B Q, Chen F, Zhang C H, Wang Q, Wu C T and Duan X M 2011 Opt. Lett. 36 1554
|
[11] |
Zhang X L, Zhang S, Xiao N, Cui J H, Zhao J Q and Li L 2014 Appl. Opt. 53 1488
|
[12] |
Henderson S W and Hale C P 1990 Appl. Opt. 29 1716
|
[13] |
Zhang X L, Li L, Cui J H, Ju Y L and Wang Y Z 2010 Laser Phys. Lett. 7 194
|
[14] |
Dai T Y, Han L, Yao B Q, Ju Y L, Yu K K and Wang Y Z 2015 Opt. Laser Technol. 74 20
|
[15] |
Dai T Y, Ju Y L, Yao B Q, Shen Y J, Wang W and Wang Y Z 2012 Opt. Lett. 37 1850
|
[16] |
Dai T Y, Ju Y L, Duan X M, Liu W, Yao B Q and Wang Y Z 2013 Appl. Phys. B 111 89
|
[17] |
Duan X M, Shen Y J, Dai T Y, Yao B Q and Wang Y Z 2013 Laser Phys. 23 015802
|
[18] |
Ding Y, Yao B Q, Ju Y L, Li Y Y, Duan X M and He W J 2015 Laser Phys. 25 015002
|
[19] |
Han L, Yao B Q, Duan X M, Li S, Dai T Y, Ju Y L and Wang Y Z 2014 Chin. Opt. Lett. 12 081401
|
[20] |
Dai T Y, Ding Y, Ju Y L, Yao B Q, Li Y Y and Wang Y Z 2015 Infrared Phys. Techn. 72 254
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|