Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 097302    DOI: 10.1088/1674-1056/25/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors

Linlin Tu(屠林林)1, Chi Zhang(张弛)1, Zhong Huang(黄忠)1, Jason Yau1,3, Peng Zhan(詹鹏)1,2, Zhenlin Wang(王振林)1,2
1. School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
3. School of Physics, University of Western Australia, Perth WA 6009, Australia
Abstract  

Herein, we propose a high-quality (Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors (DBRs) with low propagation loss and extremely strong mode confinement. This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer. The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor (Fp) of up to nearly 20000 and a gain threshold approaching 266 cm-1 at 1550 nm, promising a greater potential in deep sub-wavelength lasing applications.

Keywords:  plasmonic nanocavity      photonic crystal      nanowire  
Received:  25 March 2016      Revised:  28 April 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  81.07.Bc (Nanocrystalline materials)  
  81.07.Gf (Nanowires)  
Fund: 

Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2012CB921501 and 2013CB632703) and the National Natural Science Foundation of China (Grant Nos. 11274160, 91221206, and 51271092).

Corresponding Authors:  Peng Zhan, Zhenlin Wang     E-mail:  zhanpeng@nju.edu.cn;zlwang@nju.edu.cn

Cite this article: 

Linlin Tu(屠林林), Chi Zhang(张弛), Zhong Huang(黄忠), Jason Yau, Peng Zhan(詹鹏), Zhenlin Wang(王振林) A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors 2016 Chin. Phys. B 25 097302

[1] Noda S, Fujita M and Asano T 2007 Nat. Photon 1 449
[2] Bianucci P, Wang X, Veinot J G and Meldrum A 2010 Opt. Express 18 8466
[3] Yanik M F, Fan S and Soljacic M 2003 Appl. Phys. Lett. 83 2739
[4] Robinson J T, Christina M, Long C and Michal L 2005 Phys. Rev. Lett. 95 143901
[5] Vahala K J 2003 Nature 424 839
[6] Wiersig J and Hentschel M 2006 Phys. Rev. A 73 031802
[7] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, and Lukin M 2007 Nature 450 402
[8] Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Phys. 5 470
[9] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
[10] de Leon N P, Shields B J, Yu C L, Englund D E, Akimov A V, Lukin M D and Park H 2012 Phys. Rev. Lett. 108 226803
[11] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
[12] Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten FWM, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Nötzel R and Smit M K 2007 Nat. Photonics 1 589
[13] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[14] Pan J, Chen Z, Chen J, Zhan P, Tang C J and Wang Z L 2012 Opt. Lett. 37 1181
[15] Xiao Y, Liu Y, Li B, Chen Y, Li Y and Gong Q 2012 Phys. Rev. A 85 031805
[16] Jiang H, Liu C, Wang P, Zhang D, Lu Y and Ming H 2013 Opt. Express 21 4752
[17] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photonics 2 496
[18] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[19] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[20] Xu C, Hu T, Chen R, Ping Y, Yang J and Jiang X 2013 J. Opt 15 105005
[21] Xiao J, Liu J, Zheng Z, Bian Y, Wang G and Li S 2012 Phys. Status Solidi A 209 1552
[22] Xiang C, Chan C K and Wang J 2014 Sci. Rep. 4 3720
[23] Chen X, Agio M and Sandoghdar V 2012 Phys. Rev. Lett. 108 233001
[24] Li Z, Piao R, Zhao J, Meng X and Tong K 2015 Chin. Phys. B 24 077303
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[11] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[12] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[13] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[14] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[15] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
No Suggested Reading articles found!