CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors |
Linlin Tu(屠林林)1, Chi Zhang(张弛)1, Zhong Huang(黄忠)1, Jason Yau1,3, Peng Zhan(詹鹏)1,2, Zhenlin Wang(王振林)1,2 |
1. School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
3. School of Physics, University of Western Australia, Perth WA 6009, Australia |
|
|
Abstract Herein, we propose a high-quality (Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors (DBRs) with low propagation loss and extremely strong mode confinement. This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer. The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor (Fp) of up to nearly 20000 and a gain threshold approaching 266 cm-1 at 1550 nm, promising a greater potential in deep sub-wavelength lasing applications.
|
Received: 25 March 2016
Revised: 28 April 2016
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.07.Gf
|
(Nanowires)
|
|
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2012CB921501 and 2013CB632703) and the National Natural Science Foundation of China (Grant Nos. 11274160, 91221206, and 51271092). |
Corresponding Authors:
Peng Zhan, Zhenlin Wang
E-mail: zhanpeng@nju.edu.cn;zlwang@nju.edu.cn
|
Cite this article:
Linlin Tu(屠林林), Chi Zhang(张弛), Zhong Huang(黄忠), Jason Yau, Peng Zhan(詹鹏), Zhenlin Wang(王振林) A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors 2016 Chin. Phys. B 25 097302
|
[1] |
Noda S, Fujita M and Asano T 2007 Nat. Photon 1 449
|
[2] |
Bianucci P, Wang X, Veinot J G and Meldrum A 2010 Opt. Express 18 8466
|
[3] |
Yanik M F, Fan S and Soljacic M 2003 Appl. Phys. Lett. 83 2739
|
[4] |
Robinson J T, Christina M, Long C and Michal L 2005 Phys. Rev. Lett. 95 143901
|
[5] |
Vahala K J 2003 Nature 424 839
|
[6] |
Wiersig J and Hentschel M 2006 Phys. Rev. A 73 031802
|
[7] |
Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, and Lukin M 2007 Nature 450 402
|
[8] |
Kolesov R, Grotz B, Balasubramanian G, Stöhr R J, Nicolet A A L, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Phys. 5 470
|
[9] |
Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
|
[10] |
de Leon N P, Shields B J, Yu C L, Englund D E, Akimov A V, Lukin M D and Park H 2012 Phys. Rev. Lett. 108 226803
|
[11] |
Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
|
[12] |
Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten FWM, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Nötzel R and Smit M K 2007 Nat. Photonics 1 589
|
[13] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
|
[14] |
Pan J, Chen Z, Chen J, Zhan P, Tang C J and Wang Z L 2012 Opt. Lett. 37 1181
|
[15] |
Xiao Y, Liu Y, Li B, Chen Y, Li Y and Gong Q 2012 Phys. Rev. A 85 031805
|
[16] |
Jiang H, Liu C, Wang P, Zhang D, Lu Y and Ming H 2013 Opt. Express 21 4752
|
[17] |
Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photonics 2 496
|
[18] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[19] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[20] |
Xu C, Hu T, Chen R, Ping Y, Yang J and Jiang X 2013 J. Opt 15 105005
|
[21] |
Xiao J, Liu J, Zheng Z, Bian Y, Wang G and Li S 2012 Phys. Status Solidi A 209 1552
|
[22] |
Xiang C, Chan C K and Wang J 2014 Sci. Rep. 4 3720
|
[23] |
Chen X, Agio M and Sandoghdar V 2012 Phys. Rev. Lett. 108 233001
|
[24] |
Li Z, Piao R, Zhao J, Meng X and Tong K 2015 Chin. Phys. B 24 077303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|