Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096107    DOI: 10.1088/1674-1056/25/9/096107
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds

Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平)
School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

The crystal structure, magnetization, and spontaneous magnetostriction of ferromagnetic Laves phase GdFe2 compound have been investigated. High resolution synchrotron x-ray diffraction (XRD) analysis shows that GdFe2 has a lower cubic symmetry with easy magnetization direction (EMD) along [100] below Curie temperature TC. The replacement of Gd with a small amount of Tb changes the EMD to [111]. The Curie temperature decreases while the field dependence of the saturation magnetization (Ms) measured in temperature range 5-300 K varies with increasing Tb concentration. Coercivity Hc increases with increasing Tb concentration and decays exponentially as temperature increases. The anisotropy in GdFe2 is so weak that some of the rare-earth substitution plays an important role in determining the easy direction of magnetization in GdFe2. The calculated magnetostrictive constant λ100 shows a small value of 37×10-6. This value agrees well with experimental data 30×10-6. Under a relatively small magnetic field, GdFe2 exhibits a V-shaped positive magnetostriction curve. When the field is further increased, the crystal exhibits a negative magnetostriction curve. This phenomenon has been discussed in term of magnetic domain switching. Furthermore, magnetostriction increases with increasing Tb concentration. Our work leads to a simple and unified mesoscopic explanation for magnetostriction in ferromagnets. It may also provide insight for developing novel functional materials.

Keywords:  crystal structure      magnetic anisotropy      lattice distortion      magnetostriction  
Received:  30 March 2016      Revised:  03 May 2016      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.30.Gw (Magnetic anisotropy)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB619401).

Corresponding Authors:  Adil Murtaza     E-mail:  adil.xjtu@gmail.com

Cite this article: 

Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平) Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds 2016 Chin. Phys. B 25 096107

[1] Clark A E, Belson H S and Tamagawa N 1972 Phys. Lett. A 42 160
[2] Koon N C, Williams C M and Das B N 1991 J. Magn. Magn. Mater. 100 173
[3] Clark A E and Belson H S N 1972 Phys. Rev. B 5 3642
[4] Koon N C, Schindler A and Carter F 1971 Phys. Lett. A 34 413
[5] Clark A E 1974 AIP Conf. Proc. 18 1015
[6] Samata H and Fujiwara N 1999 J. Magn. Magn. Mater. 195 376
[7] Barbara B, Giraud J P, Lafores J, Lemaire R, Siaud E and Schweizer J 1977 Physica 86 155
[8] Cullen J R and Clark A E 1977 Phys. Rev. B 15 4510
[9] Clark A E 1978 Handbook on the Physics and Chemistry of Rare Earths (Schneider K A and Eyring Jr, Ed.) (Amsterdam: North-Holland)
[10] du Tremolet de Lacheisserie E 1993 Magnetostriction: Theory and Applications of Magnetoelasticity (Florida: CRC Press)
[11] Hathaway K B and Clark A E 1993 MRS Bulletin 18 34
[12] Bowden G J, Bunbury D Stp, Guimaraes A P and Snyder R E 1968 J. Phys. C 1376
[13] Atzmony U and Dariel M P 1974 Phys. Rev. B 10 2060
[14] Barb D, Burzo E and Morariu M 1974 J. Physique Colloq. 35 C6-625
[15] Buschow K H J 1980 Ferromagnetic Materials (Wohlfarth E P, Ed.) (Amsterdam: North-Holland) p. 297
[16] Yang S and Ren X B 2008 Phys. Rev. B 77 014407
[17] Ryo S and Daisuke M and Akimasa S 2015 Appl. Phys. Exp. 8 043004
[18] Thoma D and Perepezko J 1995 J. Alloys Compd. 224 330
[19] Shi Y G, Tang S L, Huang Y J, Lv L Y and Du Y W 2007 Appl. Phys. Lett. 90 142515
[20] Duc N H and Brommer P E 1999 Handbook of Magnetic Materials (Buschow K H J, Ed.) (New York: Elsevier)
[21] Gratz E and Markosyan A S 2001 J. Phys.: Condens. Matter 13 R385
[22] Brooks M S, Nordstrom L and Johansson B 1991 Physica 172B 95
[23] Baudelet 1990 Europhys. Lett. 13 751
[24] Ahmadizadeh Y, Soti V, Abedi B and R 2009 Adv. Studies Theor. Phys: F 37 265
[25] Besnus M J, Herr A and Fisher G 1971 J. Phys. F 9 745
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[5] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[6] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[9] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[12] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[13] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[14] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[15] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
No Suggested Reading articles found!