CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations |
Feng-chun Pan(潘凤春), Zhi-peng Chen(陈治鹏), Xue-ling Lin(林雪玲), Fu Zheng(郑富), Xu-ming Wang(王旭明), Huan-ming Chen(陈焕铭) |
School of Physics and Electric Information Engineering, Ningxia University, Yinchuan 750021, China |
|
|
Abstract The electronic structures and magnetic properties of the Cu and N codoped 3C-SiC system have been investigated by the first-principles calculation. The results show that the Cu doped SiC system prefers the anti-ferromagnetic (AFM) state. Compared to the Cu doped system, the ionicities of C-Cu and C-Si in Cu and N codoped SiC are respectively enhanced and weakened. Especially, the Cu and N codoped SiC systems favor the ferromagnetic (FM) coupling. The FM interactions can be explained by virtual hopping. However, higher N concentration will weaken the ferromagnetism. In order to keep the FM interaction, the N concentration should be restricted within 9.3% according to our analysis.
|
Received: 22 March 2016
Revised: 12 May 2016
Accepted manuscript online:
|
PACS:
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the Higher School Science Research Outstanding Youth Fund Project of Ningxia, China (Grant No. NGY2015049). |
Corresponding Authors:
Xue-ling Lin
E-mail: nxulxl@163.com
|
Cite this article:
Feng-chun Pan(潘凤春), Zhi-peng Chen(陈治鹏), Xue-ling Lin(林雪玲), Fu Zheng(郑富), Xu-ming Wang(王旭明), Huan-ming Chen(陈焕铭) Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations 2016 Chin. Phys. B 25 096108
|
[1] |
Dietl T, Ohno H, Matsukura F and Cubert D 2000 Science 287 1019
|
[2] |
Ohno H 1998 Science 281 951
|
[3] |
Al Azri M, Elzain M, Bouziane K, Chérif S, Declémy A and Thomé L 2013 J. Appl. Phys. 113 17C305
|
[4] |
Elzain M, Al-Harthi S, Gismelseed A, Al-Rawas A, Yousif A, Widatallah H and Al-Barwani M 2014 Hyperfine Interact 226 281
|
[5] |
Syväjärvi M, Stanciu V, Izadifard M, Chen W M, Buyanova I A, Svedlindh P and Yakimova R 2004 Mater. Sci. Forum 457-460 747
|
[6] |
Theodoropoulou N, Hebard A F, Chu S, Overberg M E, Abernathy C R, Pearton S J, Wilson R G, Zavada J M and Park Y D 2002 J. Vac. Sci. Technol. A 20 579
|
[7] |
Stromberg F, Keune W, Chen X, Bedanta S, Reuther H and Mücklich A 2006 J. Phys.: Condens. Matter 18 9881
|
[8] |
Lin X L and Pan F C 2014 J. Supercond. Nov. Magn. 27 1513
|
[9] |
Liu L Z, Wu X L, Liu X X, Xiong S J and Chu P K 2014 J. Phys. Chem. C 118 25429
|
[10] |
Wang Y T, Chen X L, Li L, Shalimov A, Tong W, Prucnal S, Munnik F, Yang Z R, Skorupa W, Helm M and Zhou S Q 2014 J. Appl. Phys. 115 17C104
|
[11] |
Zhou R W, Liu X C, Wang H J, Chen W B, Li F, Zhou S Y and Shi E W 2015 AIP Advances 5 047146
|
[12] |
He X J, Tan J, Zhang B L, Zhao M W, Xia H H, Liu X D, He Z T, Yang X M and Zhou X T 2013 Appl. Phys. Lett. 103 162409
|
[13] |
Wang Y, Li L, Prucnal S, Chen X, Tong W, Yang Z, Munnik F, Potzger K, Skorupa W, Gemming S, Helm M and Zhou S 2014 Phys. Rev. B 89 014417
|
[14] |
Wang Y, Liu Y, Wendler E, Hübner R, Anwand W, Wang G, Chen X, Tong W, Yang Z, Munnik F, Bukalis G, Chen X, Gemming S, Helm M and Zhou S 2015 Phys. Rev. B 92 174409
|
[15] |
Pan F, Yang B, Lin X, Li H and Chen H 2015 J. Supercond. Nov. Magn. 28 1617
|
[16] |
Lin X, Yan S, Zhao M, Hu S, Yao X, Han C, Chen Y, Liu G, Dai Y and Mei L 2010 J. Appl. Phys. 107 033903
|
[17] |
Lee J, Choi I, Shin S, Lee S, Lee J, Whang C, Lee S, Lee K, Baek J, Chae K and Song J 2007 Appl. Phys. Lett. 90 032504
|
[18] |
Zhou L, Li H, Zhang L, Cheng J, Zhao H, Chu W, Yang J, Luo Y and Wu Z 2011 J. Phys. Chem. C 115 253
|
[19] |
Zhao C, Zhen C, Li Y, Ma L, Pan C and Hou D 2012 Solid State Commun. 152 752
|
[20] |
Zheng H, Yan Y, Lv Z, Yang S, Li X, Liu J, Ye B, Peng C, Diao C and Zhang W 2013 Appl. Phys. Lett. 102 142409
|
[21] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[22] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[23] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[24] |
Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
|
[25] |
Miao M S and Lambrecht W 2003 Phys. Rev. B 68 125204
|
[26] |
Miao M S and Lambrecht W 2006 Phys. Rev. B 74 235218
|
[27] |
Zhao M, Pan F and Mei L 2010 Appl. Phys. Lett. 96 012508
|
[28] |
Lin X, Yan S, Zhao M, Hu S, Han C, Chen Y, Liu G, Dai Y and Mei L 2011 Phys. Lett. A 375 638
|
[29] |
Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
|
[30] |
Lin X, Pan F and Chen H 2015 J. Supercond. Nov. Magn. 28 3065
|
[31] |
Li X, Dai Y, Ma Y and Huang B 2014 Phys. Chem. Chem. Phys. 16 13383
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|