|
|
Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function |
Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌) |
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states.
|
Received: 13 February 2016
Revised: 25 April 2016
Accepted manuscript online:
|
PACS:
|
34.35.+a
|
(Interactions of atoms and molecules with surfaces)
|
|
34.70.+e
|
(Charge transfer)
|
|
78.70.-g
|
(Interactions of particles and radiation with matter)
|
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students' Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078). |
Corresponding Authors:
Xi-Meng Chen
E-mail: chenlin@lzu.edu.cn
|
Cite this article:
Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌) Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function 2016 Chin. Phys. B 25 083401
|
[1] |
Meyer C, Bonetto F, Vidal R, García E A, Gonzalez C, Ferrón J and Goldberg E C 2012 Phys. Rev. A 86 032901
|
[2] |
Ray M P, Lake R E, Marston J B and Sosolik C E 2015 Surf. Sci. 635 37
|
[3] |
Liu W B, Niu S T, Yang A X, Han C Z, Hu W, Chen L, Shao J X and Chen X M 2015 Chin. Phys. B 24 063403
|
[4] |
Hu B T, Zhang H J, Zhang J, Song Y S, Wang L L, Chen C H and Gu J G 2007 Chin. Phys. 16 2918
|
[5] |
Li T C, Liu C H, Qu Y Z, Liu L, Wu Y, Wang J G, Liebermann H P and Buenker R J 2015 Chin. Phys. B 24 0103401
|
[6] |
Borisov A G, Teillet-Billy D and Gauyacq J P 1992 Phys. Rev. Lett. 68 2842
|
[7] |
Chen L, Qiu S L, Xiong F F, Lu J J, Liu P Y, Ding B, Li Y, Cui Y, Guo Y L and Chen X M 2015 J. Chem. Phys. 143 114703
|
[8] |
Wang Q J, Qiu S L, Xiong F F, Li Y, Ding B, Guo Y L, Chen X M and Chen L 2015 Eur. Phys. J. D 69 210
|
[9] |
Chen L, Ding B, Li Y, Qiu S L, Xiong F F, Zhou H, Guo Y L and Chen X M 2013 Phys. Rev. A 88 044901
|
[10] |
Tang T T, Wang D H and Wang S S 2012 Chin. Phys. B 21 073202
|
[11] |
Xu Z X and Roy V A L 2014 Chin. Phys. B 23 048501
|
[12] |
Obreshkov B and Thumm U 2013 Phys. Rev. A 87 022903
|
[13] |
Winter H 2002 Phys. Rep. 367 387
|
[14] |
Los J and Geerlings J J C 1990 Phys. Rep. 190 133
|
[15] |
Borisov A G and Esaulov V A 2000 J. Phys.:Condens. Matter 12 R177
|
[16] |
Monreal R C 2014 Prog. Surf. Sci. 89 80
|
[17] |
Keller C A, DiRubio C A, Kimmel G A and Cooper B H 1995 Phys. Rev. Lett. 75 1654
|
[18] |
Canário A R, Borisov A G, Gauyacq J P and Esaulov V A 2005 Phys. Rev. B 71 121401
|
[19] |
Kimmel G A and Cooper B H 1993 Phys. Rev. B 48 12164
|
[20] |
Canário A R, Kravchuk T and Esaulov V A 2006 New J. Phys. 8 227
|
[21] |
Hamoudi H, Dablemont C and Esaulov V A 2008 Surf. Sci. 602 2486
|
[22] |
Bonetto F J, García E A, González C and Goldberg E C 2014 J. Phys. Chem. C 118 8359
|
[23] |
Chen L, Shen J, Jia J, Kandasamy T, Bobrov K, Guillemot L, Fuhr J D, Luz Martiarena M and Esaulov V A 2011 Phys. Rev. A 84 052901
|
[24] |
Kravchuk T, Bandourine Yu, Hoffman A and Esaulov V A 2006 Surf. Sci. 600 L265
|
[25] |
Garcia E A, Romero M A, Gonzalez P C and Goldberg E C 2009 Surf. Sci. 603 597
|
[26] |
Bolcatto P G, Goldberg E C and Passeggi M C G 1998 Phys. Rev. B 58 5007
|
[27] |
Brako R and Newns D M 1981 Surf. Sci. 108 253
|
[28] |
Nordlander P and Tully J C 1990 Phys. Rev. B 42 5564
|
[29] |
van Wunnik J N M, Broko R, Makoshi K and Newns D M 1983 Surf. Sci. 126 618
|
[30] |
Zimny R, Nienhaus H and Winter H 1989 Radiat. Eff. Def. Sol. 109 9
|
[31] |
Zimny R 1990 Surf. Sci. 233 333
|
[32] |
Borisov A G, Winter H, Dierkes G and Zimny R 1996 Europhys. Lett. 33 229
|
[33] |
Hirose E and Torikai E 2008 Surf. Interface Anal. 40 1705
|
[34] |
Delos J B 1981 Rev. Mod. Phys. 53 287
|
[35] |
McDaniel E W, Mitchell J B A and Rudd M E 1993 Atomic Collisions:Heavy Particle Projectiles (New York:Wiley)
|
[36] |
Borisov A G, Kazansky A K and Gauyacq J P 1999 Surf. Sci. 430 165
|
[37] |
Hecht T, Winter H, Borisov A G, Gauyacq J P and Kazansky A K 2000 Phys. Rev. Lett. 84 2517
|
[38] |
Chakraborty H, Niederhausen T and Thumm U 2004 Phys. Rev. A 69 052901
|
[39] |
Guillemot L and Esaulov V A 1999 Phys. Rev. Lett. 82 4552
|
[40] |
Borisov A G, Gauyacq J P, Chulkov E V, Silkin V M and Echenique P M 2002 Phys. Rev. B 65 235434
|
[41] |
Niedfeldt K, Carter E A and Nordlander P 2006 Surf. Sci. 600 L291
|
[42] |
Kravchuk T, Bandourine Yu, Hoffman A and Esaulov V A 2006 Surf. Sci. 600 L265
|
[43] |
Borisov A G, Mertens A, Wethekam S and Winter H 2003 Phys. Rev. A 68 012901
|
[44] |
Borisov A G, Teillet-Billy D, Gauyacq J P, Winter H and Dierkes G 1996 Phys. Rev. B 54 17166
|
[45] |
Nieuwjaer N, Bénazeth C, Benoit-Cattin P, Cafarelli P and Richard-Viard M 2005 Nucl. Instrum. Method B 230 317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|