Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 083301    DOI: 10.1088/1674-1056/25/8/083301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles

Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举)
Key Laboratory of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Abstract  We use Au@SiO2 nanoparticles (NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering (SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the “hot spots” transferred from the NP-NP gaps to NP-surface of metal gaps, meanwhile, more “hot spots” occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.
Keywords:  Au@SiO2 NPs      FDTD      SERS      EM coupling  
Received:  19 November 2015      Revised:  19 April 2016      Accepted manuscript online: 
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  47.54.Bd (Theoretical aspects)  
  47.54.Jk (Materials science applications)  
  52.38.-r (Laser-plasma interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177004).
Corresponding Authors:  Ming-Ju Huang     E-mail:  mingjuh@163.com

Cite this article: 

Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举) FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles 2016 Chin. Phys. B 25 083301

[1] Fleischman M, Hendra P J and McQuilla A 1974 J. Chem. Phys. Lett. 26 163
[2] Quyen T T B, Su W N, Chen K J, Pan C J, Rick J, Chang C C and Hwang B J 2013 Journal of Raman Spectroscopy 44 1671
[3] Zheng X G, Guo Q X and Meng D D 2011 Chin. Phys. Lett. 28 087805
[4] Wang X F, Xing X, Zhang Q L, You J L, Wu J, Zhang D M, Sun Y, Sun D L and Yin S T 2015 Chin. Phys. B 24 098104
[5] Tian Z Q, Ren B and Wu D Y 2002 J. Phys. Chem. B 106 9463
[6] Li M S and Yang C X 2010 Chin. Phys. Lett. 27 044202
[7] Lee S J, Guan Z, Xu H and Moskovits M 2007 J. Phys. Chem. C 111 17985
[8] Zhong Y T, Cheng Z Q and Ma L 2014 Chin. Phys. Lett. 31 047302
[9] Wu D Y, Li J F, Ren B and Tian Z Q 2008 Chem. Soc. Rev. 37 1025
[10] Park W H and Kim Z H 2010 Nano Lett. 10 4040
[11] Pettinger B, Picardi G, Schuster R and Ertl G 2000 Electrochemistry 68 942
[12] Chen L, Liu F X and Zhan P 2011 Chin. Phys. Lett. 28 057801
[13] Cheng L, Ma C S and Yang G 2014 J. Mater. Chem. A 2 4534
[14] Zhuang M D, Liu Z, Ren B and Tian Z Q 2010 Sci. China:Chem. 53 426
[15] Liu Z, Zhang F L, Yang Z B, et al. 2013 J. Mater. Chem. C 1 5567
[16] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S and Tian Z Q 2010 Nature 464 392
[17] Li J F, Ding S Y, Yang Z L, Bai M L, Anema J R, Wang X, Wang A, Wu D Y, Ren B, Hou S M, Wandlowski T and Tian Z Q 2011 J. Am. Chem. Soc. 133 15922
[18] Li J F, Zhang Y J, Rudnev A V, Anema J R, Li S B, Hong W J, Panneerselvam R, Lipkowski J, Wandlowski T and Tian Z Q 2015 J. Am. Chem. Soc. 137 2400
[19] Yang Z B, Zhang L and You H J 2014 Part. Part. Syst. Charact. 31 390
[20] Knight M W, Wu Y P, Lassiter J B, Nordlander P and Halas N J 2009 Nano Lett. 9 2188
[21] Frens G 1973 Nat. Phys. Sci. 241 20
[22] Stober W, Fink A and Born E 1968 J. Colloid Interface Sci. 26 62
[23] Li Y J, Huang W J and Sun S G 2006 Angew. Chem. Int. Ed. 45 2537
[24] Wang X, Li M H, Meng L Y, Lin K Q, Feng J M, Huang T X, Yang Z L and Ren B 2014 ACS Nano 8 528
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[4] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[5] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[10] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[11] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[12] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[13] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[14] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[15] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
No Suggested Reading articles found!