Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077801    DOI: 10.1088/1674-1056/25/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermally induced native defect transform in annealed GaSb

Jie Su(苏杰)1,2, Tong Liu(刘彤)1, Jing-Ming Liu(刘京明)1, Jun Yang(杨俊)1, Yong-Biao Bai(白永彪)1,2, Gui-Ying Shen(沈桂英)1,2, Zhi-Yuan Dong(董志远)1, Fang-Fang Wang(王芳芳)3, You-Wen Zhao(赵有文)1
1 Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Infrared Imaging Materials and Detectors Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  Undoped p-type GaSb single crystals were annealed at 550-600 ℃ for 100 h in ambient antimony. The annealed GaSb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy (GDMS), infrared (IR) optical transmission and photoluminescence (PL) spectroscopy. Compared with the as-grown GaSb single crystal, the annealed GaSb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the GaSb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.
Keywords:  GaSb      annealing      defect      Hall effect measurement  
Received:  16 December 2015      Revised:  14 March 2016      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).
Corresponding Authors:  You-Wen Zhao     E-mail:  zhaoyw@semi.ac.cn

Cite this article: 

Jie Su(苏杰), Tong Liu(刘彤), Jing-Ming Liu(刘京明), Jun Yang(杨俊), Yong-Biao Bai(白永彪), Gui-Ying Shen(沈桂英), Zhi-Yuan Dong(董志远), Fang-Fang Wang(王芳芳), You-Wen Zhao(赵有文) Thermally induced native defect transform in annealed GaSb 2016 Chin. Phys. B 25 077801

[1] Milne A G and Polyako A Y 1993 Solid-State Electron. 36 803
[2] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[3] Passlack M, Schubert E F, Hobson W S, Hong M, Moriya N, Chu S N G, Konstadinidis K, Mannaerts J P, Schnoes M L and Zydzik G J 1995 J. Appl. Phys. 77 686
[4] Rehm R, Lemke F, Masur M, Schmitz J, Stadelmann T, Wauro M, Wörl A and Walther M 2015 Infrared Phys. Technol. 70 87
[5] Pusz W, Kowalewski A, Martyniuk P, Gawron W, Plis E, Krishna S and Rogalski A 2014 Opt. Eng. 53 043107
[6] Lv Y Q, Zhang L X, Si J J, Peng Z Y, Zhang L, Cao X C, Zhang X F, Ding J X, Zhu X B, Yao G S, Zhang X L and Niu Z C 2014 Opt. Quant. Electron. 47 1731
[7] Sifferman S D, Nair H P, Salas R, Sheehan N T, Maddox S J, Crook A M and Bank S R 2015 IEEE J. Sel. Top. Quantum 21 1502410
[8] George M and Kagawa T 1980 Jpn. J. Appl. Phys. 19 2303
[9] Morosini M B Z, Herrera-Perez J L, Loural M S S, Von Zuben A A G, da Silveira A C F and Patel N B 1993 IEEE J. Quantum Electron. 29 2103
[10] Wang Y B, Xu Y, Song G F and Chen L H 2012 Chin. Phys. B 21 084208
[11] Sulima O V and Bett A W 2001 Sol. Energy Mater. Sol. Cells 66 533
[12] Tang L, Ye H and Xu J 2014 Sol. Energy Mater. Sol. Cells 122 94
[13] Juang B C, Laghumavarapu R B, Foggo B J, Simmonds P J, Lin A, Liang B and Huffaker D L 2015 Appl. Phys. Lett. 106 111101
[14] Xie H, Piao J, Katz J and Wang W I 1991 J. Appl. Phys. 70 3152
[15] Wang Y B, Xu Y, Zhang Y, Yu X, Song G F and Chen L H 2011 Chin. Phys. B 20 067302
[16] Baxter R D, Bate R T and Reid F J 1965 J. Phys. Chem. Solids 26 41
[17] Jakowetz W, Ruhle W, Breuninger K and Pilkuhn M 1972 Phys. Stat. Sol. A 12 169
[18] Baranov A N, Dyshlovenko P E, Kopylov A A and Sherstnyev V V 1988 Sov. Tech. Phys. Lett. 14 29
[19] Chandola A, Pino R and Dutta P S 2005 Semicond. Sci. Technol. 20 886
[20] Ghezzi C, Magnanini R, Parisini A, Rotelli B, Tarricone L, Bosacchi A and Franchi S 1997 Semicond. Sci. Technol. 12 858
[21] Wu M C and Chen C C 1992 J. Appl. Phys. 72 4275
[22] Anayama C, Tanahashi T, Kuwatsuka H, Nishiyama S, Isozumi S and Nakajima K 1990 Appl. Phys. Lett. 56 239
[23] Takeda Y, Noda S and Sasaki A 1984 Appl. Phys. Lett. 45 656
[24] Campos M D O 1973 J. Appl. Phys. 44 2642
[25] Dutta P S, Koteswara Rao K S R, Bhat H L and Kumar V 1995 Appl. Phys. A 61 149
[26] Swaminathan V and Macrander A T 1991 Materials Aspects of GaAs and InP Based Structures (Englewood Cliffs: Prentice Hall) Chap. 5
[27] Dutta P S, Méndez B, Piqueras J, Dieguez E and Bhat H L 1996 J. Appl. Phys. 80 1112
[28] Woelk C and Benz K W 1974 J. Cryst. Growth 27 177
[29] Méndez B, Dutta P S, Piqueras J and Dieguez E 1995 Appl. Phys. Lett. 67 2648
[30] Tuck B 1988 Atomic Diffusion in III-VSemiconductors (Bristol: Adam Hilger) pp.9-11
[31] Landolt B 2003 Group III Condensed Matter 41A2b
[32] Bracht H, Nicols S P, Walukiewicz W, Silveira J P, Briones F and Haller E E 2000 Nature 408 69
[33] Bracht H, Nicols S P, Haller E E, Silveira J P and Briones F 2001 J. Appl. Phys. 89 5393
[34] Wbiler D and Mehrer H 2006 Philos. Mag. A 49 309
[35] Chroneos A and Bracht H 2008 J. Appl. Phys. 104 093714
[36] Hakala M, Puska M J and Nieminen R M 2002 J. Appl. Phys. 91 4988
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[5] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[9] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[10] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[11] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[12] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[13] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[14] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!