Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074701    DOI: 10.1088/1674-1056/25/7/074701

Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions

Tasawar Hayat1,2, Ikram Ullah1, Taseer Muhammad1, Ahmed Alsaedi2, Sabir Ali Shehzad3
1 Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan;
2 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
3 Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000, Pakistan
Abstract  This article investigates the three-dimensional flow of Powell-Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.
Keywords:  three-dimensional flow      Powell-Eyring fluid      nanoparticles      thermal radiation  
Received:  07 December 2015      Revised:  17 February 2016      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.57.Qk (Rheological aspects)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Corresponding Authors:  Taseer Muhammad     E-mail:

Cite this article: 

Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions 2016 Chin. Phys. B 25 074701

[1] Choi S U S 1995 ASME FED 231 99
[2] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[3] Khan W A and Pop I 2010 Int. J. Heat Mass Transfer 53 2477
[4] Makinde O D and Aziz A 2011 Int. J. Thermal Sci. 50 1326
[5] Mustafa M, Hayat T, Pop I, Asghar S and Obaidat S 2011 Int. J. Heat Mass Transfer 54 5588
[6] Turkyilmazoglu M 2012 Chem. Eng. Sci. 84 182
[7] Rashidi M M, Abelman S and Mehr N F 2013 Int. J. Heat Mass Transfer 62 515
[8] Ibrahim W and Makinde O D 2013 Comput. Fluids 86 433
[9] Sheikholeslami M, Abelman S and Ganji D D 2014 Int. J. Heat Mass Transfer 79 212
[10] Zeeshan A, Baig M, Ellahi R and Hayat T 2014 J. Comp. Theor. Nanosci. 11 646
[11] Lin Y, Zheng L and Zhang X 2014 Int. J. Heat Mass Transfer 77 708
[12] Zhang C, Zheng L, Zhang X and Chen G 2015 Appl. Math. Modell. 39 165
[13] Hayat T, Muhammad T, Shehzad S A and Alsaedi A 2015 AIP Adv. 5 017107
[14] Zaman H 2013 Am. J. Comput. Math. 3 313
[15] Mushtaq A, Mustafa M, Hayat T, Rahi M and Alsaedi A 2013 Z. Naturforsch. A 68 791
[16] Jalil M, Asghar S and Imran S M 2013 Int. J. Heat Mass Transfer 65 73
[17] Rosca A V and Pop I 2014 Int. J. Heat Mass Transfer 71 321
[18] Hayat T, Asad S, Mustafa M and Alsaedi A 2014 Plos One 9 e103214
[19] Poonia M and Bhargava R 2014 J. Thermophys. Heat Transfer 28 499
[20] Ashraf M B, Hayat T and Alsaedi A 2015 Eur. Phys. J. Plus 130 5
[21] Liao S J 2004 Appl. Math. Comput. 147 499
[22] Abbasbandy S, Hayat T, Alsaedi A and Rashidi M M 2014 Int. J. Numer. Methods Heat Fluid Flow 24 390
[23] Sheikholeslami M, Hatami M and Ganji D D 2014 J. Mol. Liquids 194 30
[24] Hayat T, Imtiaz M, Alsaedi A and Mansoor R 2014 Chin. Phys. B 23 054701
[25] Hayat T, Asad S, Mustafa M and Alsulami H H 2014 Chin. Phys. B 23 084701
[26] Lin Y and Zheng L 2015 AIP Adv. 5 107225
[27] Ellahi R, Hassan M and Zeeshan A 2015 Int. J. Heat Mass Transfer 81 449
[28] Hayat T, Muhammad T, Shehzad S A, Chen G Q and Abbas I A 2015 J. Magn. Magn. Mater. 389 48
[29] Abbasi F M, Mustafa M, Shehzad S A, Alhuthali M S and Hayat T 2016 Chin. Phys. B 25 014701
[30] Ariel P D 2007 Comput. Math. Appl. 54 920
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[13] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[14] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[15] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!