ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal |
Rong-Guo Yang(杨荣国)1,2, Jing-jing Wang(王晶静)2, Jing Zhang(张静)1,2, Heng-Xin Sun(孙恒信)1,3 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China; 2 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 3 Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite-Gauss TEM01 mode has been demonstrated experimentally in this paper. Two squeezed TEM01 modes, which are generated by a pair of degenerate optical parametric amplifiers (DOPA) with the nonlinear crystals of periodically poled KTiOPO4, have been combined to produce TEM01 mode entanglement using a beam splitter. The 1.5 dB for the sum of amplitude and 1.2 dB for the difference of phase below shot-noise level is achieved with the measurement system of a Bell state detection.
|
Received: 22 December 2015
Revised: 15 March 2016
Accepted manuscript online:
|
PACS:
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504218 and 61108003) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021005-2). |
Corresponding Authors:
Rong-Guo Yang
E-mail: yrg@sxu.edu.cn
|
Cite this article:
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信) Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal 2016 Chin. Phys. B 25 074208
|
[1] |
McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E and Lam P K 2004 Phys. Rev. Lett. 93 161105
|
[2] |
Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2005 Phys. Rev. Lett. 95 211102
|
[3] |
He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
|
[4] |
Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
|
[5] |
Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
|
[6] |
Josse V, Sabuncu M, Cerf N J, Leuchs G and Andersen U L 2006 Phys. Rev. Lett. 96 163602
|
[7] |
Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
|
[8] |
Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
|
[9] |
Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C and Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese)
|
[10] |
Senior R J, Milford G N, Janousek J, Dunlop A E, Wagner K, Bachor H A, Ralph T C, Huntington E H and Harb C C 2007 Opt. Express 15 5310
|
[11] |
Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X and Gao J R 2013 J. Opt. Soc. Am. B 30 314
|
[12] |
Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C and Harb C C 2007 Phys. Rev. Lett. 98 083602
|
[13] |
Yang R G, Sun H X, Zhang J X and Gao J R 2011 Chin. Phys. B 20 060305
|
[14] |
Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photonics 7 229
|
[15] |
Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
|
[16] |
Treps N, Andersen U, Buchler B, Lam P K, Bachor H and Fabre C 2002 Phys. Rev. Lett. 88 203601
|
[17] |
Treps N, Grosse N, Bowen W P, Hsu M T L, Fabre C, Bachor H A and Lam P K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S664
|
[18] |
Li R, Zhai Z H, Zhao S J and Gao J R 2010 Acta Phys. Sin. 59 7724 (in Chinese)
|
[19] |
Fabre C, Fouet J B and Maitre A 2000 Opt. Lett. 25 76
|
[20] |
Delaubert V, Treps N, Fabre C, Bachor H A and Réfrégier P 2008 Europhys. Lett. 81 44001
|
[21] |
Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
|
[22] |
Sun H X, Liu Z L, Liu K, Yang R G, Zhang J X and Gao J R 2014 Chin. Phys. Lett. 31 084202
|
[23] |
Caves C M and Drummond P D 1994 Rev. Mod. Phys. 66 481
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|